Wan Allison, Riedl Christoph, Lazer David
Network Science Institute, Northeastern University, Boston, MA 02115.
D'Amore-McKim School of Business, Northeastern University, Boston, MA 02115.
Proc Natl Acad Sci U S A. 2025 Jul 15;122(28):e2422892122. doi: 10.1073/pnas.2422892122. Epub 2025 Jul 10.
How does social network structure amplify or stifle behavior diffusion? Existing theory suggests that when social reinforcement makes the adoption of behavior more likely, it should spread more-both farther and faster-on clustered networks with redundant ties. Conversely, if adoption does not benefit from social reinforcement, it should spread more on random networks which avoid such redundancies. We develop a model of behavior diffusion with tunable probabilistic adoption and social reinforcement parameters to systematically evaluate the conditions under which clustered networks spread behavior better than random networks. Using simulations and analytical methods, we identify precise boundaries in the parameter space where one network type outperforms the other or they perform equally. We find that, in most cases, random networks spread behavior as far or farther than clustered networks, even when social reinforcement increases adoption. Although we find that probabilistic, socially reinforced behaviors can spread farther on clustered networks in some cases, this is not the dominant pattern. Clustered networks are even less advantageous when individuals remain influential for longer after adopting, have more neighbors, or need more neighbors before social reinforcement takes effect. Under such conditions, clustering tends to help only when adoption is nearly deterministic, which is not representative of socially reinforced behaviors more generally. Clustered networks outperform random networks by a 5% margin in only 22% of the parameter space under its most favorable conditions. This pattern reflects a fundamental trade-off: Random ties enhance reach, while clustered ties enhance social reinforcement.
社交网络结构是如何放大或抑制行为传播的?现有理论表明,当社会强化使行为更有可能被采用时,它应该在具有冗余连接的聚集网络上传播得更远、更快。相反,如果行为采用没有从社会强化中受益,那么它应该在避免这种冗余的随机网络上传播得更多。我们开发了一个行为传播模型,该模型具有可调的概率采用和社会强化参数,以系统地评估聚集网络比随机网络更能传播行为的条件。通过模拟和分析方法,我们在参数空间中确定了精确的边界,在这些边界处,一种网络类型比另一种网络类型表现更好,或者它们表现相当。我们发现,在大多数情况下,即使社会强化增加了行为采用,随机网络传播行为的距离也与聚集网络相同或更远。虽然我们发现在某些情况下,概率性的、受社会强化的行为在聚集网络上可以传播得更远,但这不是主导模式。当个体在采用行为后保持影响力的时间更长、有更多邻居,或者在社会强化生效前需要更多邻居时,聚集网络的优势就更小。在这种情况下,只有当行为采用几乎是确定性的时候,聚集才往往有帮助,而这在更普遍的社会强化行为中并不具有代表性。在最有利的条件下,聚集网络仅在22%的参数空间中比随机网络表现好5%。这种模式反映了一个基本的权衡:随机连接增强覆盖范围,而聚集连接增强社会强化。