Gao Weiguang, Liao Liyang, Isshiki Hironari, Budai Nico, Kim Junyeon, Lee Hyun-Woo, Lee Kyung-Jin, Go Dongwook, Mokrousov Yuriy, Miwa Shinji, Otani Yoshichika
Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba, Japan.
Center for Emergent Matter Science, RIKEN, Wako, Saitama, Japan.
Nat Commun. 2025 Jul 10;16(1):6380. doi: 10.1038/s41467-025-61602-7.
The orbital Edelstein effect and orbital Hall effect, where a charge current induces a nonequilibrium orbital angular momentum, offer a promising method for efficiently manipulating nanomagnets using light elements. Despite extensive research, understanding the Onsager's reciprocity of orbital transport remains elusive. In this study, we experimentally demonstrate the Onsager's reciprocity of orbital transport in an orbital Edelstein system by utilizing nonlocal measurements. This method enables the precise identification of the chemical potential generated by orbital accumulation, avoiding the limitations associated with local measurements. We observe that the direct and inverse orbital-charge conversion processes produce identical electric voltages, confirming Onsager's reciprocity in orbital transport. Additionally, we find that the orbital decay length, approximately 100 nm at room temperature, is independent of the Cu thickness and decreases with decreasing temperature, revealing a distinct contrast to the spin transport behavior. Our findings provide valuable insights into both the reciprocity of the charge-orbital interconversion and the nonlocal correlation of orbital degree of freedom, laying the ground for orbitronics devices with long-range interconnections.
轨道埃德尔斯坦效应和轨道霍尔效应,即电荷电流诱导非平衡轨道角动量,为使用轻元素高效操纵纳米磁体提供了一种很有前景的方法。尽管进行了广泛研究,但对轨道输运的昂萨格互易性的理解仍然难以捉摸。在本研究中,我们通过利用非局部测量实验证明了轨道埃德尔斯坦系统中轨道输运的昂萨格互易性。这种方法能够精确识别由轨道积累产生的化学势,避免了与局部测量相关的局限性。我们观察到直接和反向轨道 - 电荷转换过程产生相同的电压,证实了轨道输运中的昂萨格互易性。此外,我们发现轨道衰减长度在室温下约为100 nm,与铜的厚度无关且随温度降低而减小,这与自旋输运行为形成鲜明对比。我们的发现为电荷 - 轨道相互转换的互易性和轨道自由度的非局部相关性提供了有价值的见解,为具有长程互连的轨道电子学器件奠定了基础。