Seifert Tom S, Go Dongwook, Hayashi Hiroki, Rouzegar Reza, Freimuth Frank, Ando Kazuya, Mokrousov Yuriy, Kampfrath Tobias
Department of Physics, Freie Universität Berlin, Berlin, Germany.
Department of Physical Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany.
Nat Nanotechnol. 2023 Oct;18(10):1132-1138. doi: 10.1038/s41565-023-01470-8. Epub 2023 Aug 7.
The emerging field of orbitronics exploits the electron orbital momentum L. Compared to spin-polarized electrons, L may allow the transfer of magnetic information with considerably higher density over longer distances in more materials. However, direct experimental observation of L currents, their extended propagation lengths and their conversion into charge currents has remained challenging. Here, we optically trigger ultrafast angular-momentum transport in Ni|W|SiO thin-film stacks. The resulting terahertz charge-current bursts exhibit a marked delay and width that grow linearly with the W thickness. We consistently ascribe these observations to a ballistic L current from Ni through W with a giant decay length (80 nm) and low velocity (0.1 nm fs). At the W/SiO interface, the L flow is efficiently converted into a charge current by the inverse orbital Rashba-Edelstein effect, consistent with ab initio calculations. Our findings establish orbitronic materials with long-distance ballistic L transport as possible candidates for future ultrafast devices and an approach to discriminate Hall-like and Rashba-Edelstein-like conversion processes.
轨道电子学这一新兴领域利用电子轨道角动量L。与自旋极化电子相比,L可能使磁信息在更多材料中以更高的密度在更长距离上传输。然而,对L电流、其扩展传播长度以及它们向电荷电流的转换进行直接实验观测仍然具有挑战性。在此,我们通过光学手段触发Ni|W|SiO薄膜堆栈中的超快角动量传输。由此产生的太赫兹电荷电流脉冲呈现出明显的延迟和宽度,它们随W厚度线性增长。我们一致将这些观测结果归因于从Ni经W的弹道L电流,其具有巨大的衰减长度(约80纳米)和低速度(约0.1纳米/飞秒)。在W/SiO界面处,通过逆轨道Rashba-Edelstein效应,L流有效地转换为电荷电流,这与第一性原理计算结果一致。我们的研究结果确立了具有长距离弹道L传输的轨道电子材料作为未来超快器件的可能候选材料,以及一种区分类霍尔和类Rashba-Edelstein转换过程的方法。