Pérez-Ribera Maribel, Faizan-Khan Muhammad, Giné Roger, Badia Josep M, Junza Alexandra, Yanes Oscar, Sales-Pardo Marta, Guimerà Roger
Department of Chemical Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Catalonia.
Department of Electronic Engineering, IISPV, Universitat Rovira i Virgili, 43007 Tarragona, Catalonia.
Brief Bioinform. 2025 Jul 2;26(4). doi: 10.1093/bib/bbaf333.
Metabolite and small molecule identification via tandem mass spectrometry (MS/MS) involves matching experimental spectra with prerecorded spectra of known compounds. This process is hindered by the current lack of comprehensive reference spectral libraries. To address this gap, we need accurate in silico fragmentation tools for predicting MS/MS spectra of compounds for which empirical spectra do not exist. Here, we present SingleFrag, a novel deep learning tool that predicts individual fragments separately, rather than attempting to predict the entire fragmentation spectrum at once. Our results demonstrate that SingleFrag surpasses state-of-the-art in silico fragmentation tools, providing a powerful method for annotating unknown MS/MS spectra of known compounds. As a proof of concept, we successfully annotate three previously unidentified compounds frequently found in human samples.
通过串联质谱(MS/MS)进行代谢物和小分子鉴定,涉及将实验光谱与已知化合物的预先记录光谱进行匹配。目前缺乏全面的参考光谱库阻碍了这一过程。为了填补这一空白,我们需要精确的计算机模拟碎裂工具来预测不存在经验光谱的化合物的MS/MS光谱。在此,我们展示了SingleFrag,这是一种新颖的深度学习工具,它分别预测单个碎片,而不是一次性尝试预测整个碎裂光谱。我们的结果表明,SingleFrag超越了最先进的计算机模拟碎裂工具,为注释已知化合物的未知MS/MS光谱提供了一种强大的方法。作为概念验证,我们成功注释了在人类样本中经常发现的三种先前未鉴定的化合物。