Suppr超能文献

CFM-ID 4.0:更准确的 ESI-MS/MS 谱预测和化合物鉴定。

CFM-ID 4.0: More Accurate ESI-MS/MS Spectral Prediction and Compound Identification.

机构信息

Department of Computing Science, University of Alberta, Edmonton, AB T6G 2R3, Canada.

Alberta Machine Intelligence Institute, Edmonton, AB T5J 3B1, Canada.

出版信息

Anal Chem. 2021 Aug 31;93(34):11692-11700. doi: 10.1021/acs.analchem.1c01465. Epub 2021 Aug 17.

Abstract

In the field of metabolomics, mass spectrometry (MS) is the method most commonly used for identifying and annotating metabolites. As this typically involves matching a given MS spectrum against an experimentally acquired reference spectral library, this approach is limited by the coverage and size of such libraries (which typically number in the thousands). These experimental libraries can be greatly extended by predicting the MS spectra of known chemical structures (which number in the millions) to create computational reference spectral libraries. To facilitate the generation of predicted spectral reference libraries, we developed CFM-ID, a computer program that can accurately predict ESI-MS/MS spectrum for a given compound structure. CFM-ID is one of the best-performing methods for compound-to-mass-spectrum prediction and also one of the top tools for mass-spectrum-to-compound identification. This work improves CFM-ID's ability to predict ESI-MS/MS spectra from compounds by (1) learning parameters from features based on the molecular topology, (2) adding a new approach to ring cleavage that models such cleavage as a sequence of simple chemical bond dissociations, and (3) expanding its hand-written rule-based predictor to cover more chemical classes, including acylcarnitines, acylcholines, flavonols, flavones, flavanones, and flavonoid glycosides. We demonstrate that this new version of CFM-ID (version 4.0) is significantly more accurate than previous CFM-ID versions in terms of both EI-MS/MS spectral prediction and compound identification. CFM-ID 4.0 is available at http://cfmid4.wishartlab.com/ as a web server and docker images can be downloaded at https://hub.docker.com/r/wishartlab/cfmid.

摘要

在代谢组学领域,质谱(MS)是最常用于鉴定和注释代谢物的方法。由于这通常涉及将给定的 MS 光谱与实验获得的参考光谱库进行匹配,因此这种方法受到这些库的覆盖范围和大小的限制(通常为数千个)。可以通过预测已知化学结构的 MS 光谱(数量以百万计)来极大地扩展这些实验库,从而创建计算参考光谱库。为了方便生成预测的光谱参考库,我们开发了 CFM-ID,这是一个可以准确预测给定化合物结构的 ESI-MS/MS 光谱的计算机程序。CFM-ID 是化合物到质谱预测表现最好的方法之一,也是质谱到化合物鉴定的顶级工具之一。这项工作通过以下三种方法提高了 CFM-ID 从化合物预测 ESI-MS/MS 光谱的能力:(1) 从基于分子拓扑的特征中学习参数,(2) 添加一种新的方法来进行环裂解,将这种裂解建模为一系列简单的化学键断裂,(3) 扩展其手写基于规则的预测器,以涵盖更多的化学类别,包括酰基肉碱、酰基胆碱、黄酮醇、黄酮、黄烷酮和黄酮糖苷。我们证明,新版本的 CFM-ID(版本 4.0)在 EI-MS/MS 光谱预测和化合物鉴定方面都比以前的 CFM-ID 版本更准确。CFM-ID 4.0 可在 http://cfmid4.wishartlab.com/ 作为网络服务器使用,其 Docker 镜像可在 https://hub.docker.com/r/wishartlab/cfmid 下载。

相似文献

引用本文的文献

本文引用的文献

5
Physicochemical Prediction of Metabolite Fragmentation in Tandem Mass Spectrometry.串联质谱中代谢物碎片化的物理化学预测
Mass Spectrom (Tokyo). 2018;7(1):A0066. doi: 10.5702/massspectrometry.A0066. Epub 2018 Jun 14.
6
MoleculeNet: a benchmark for molecular machine learning.分子网络:分子机器学习的一个基准
Chem Sci. 2017 Oct 31;9(2):513-530. doi: 10.1039/c7sc02664a. eCollection 2018 Jan 14.
8
METLIN: A Technology Platform for Identifying Knowns and Unknowns.METLIN:一种用于鉴定已知物和未知物的技术平台。
Anal Chem. 2018 Mar 6;90(5):3156-3164. doi: 10.1021/acs.analchem.7b04424. Epub 2018 Feb 9.
10
HMDB 4.0: the human metabolome database for 2018.HMDB 4.0:2018 年人类代谢组数据库。
Nucleic Acids Res. 2018 Jan 4;46(D1):D608-D617. doi: 10.1093/nar/gkx1089.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验