Sun Jian, Zhong Lisong, Chen Shan, Jin Zhaohui, Shi Linqi, Qi Baoyu, Zhang Yining, Yang Liu, Chen Zhongwei
School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin, 132022, China.
State Key Laboratory of Catalysis, Power Battery & Systems Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 110623, China.
Small. 2025 Jul 10:e2503794. doi: 10.1002/smll.202503794.
The scalable synthesis of alkaline hydrogen evolution (HER) electrocatalysts that integrate high activity with operational durability is essential for advancing practical anion exchange membrane water electrolysis (AEMWE). Herein, vertical Cu-MoNi heterostructures are fabricated via a self-driven galvanic-corrosion-coupled low-temperature reduction strategy, circumventing hydrothermal protocols for scalable electrode fabrication. The catalyst achieves a low overpotential of 276 mV and exceptional stability for up to 2000 h at an ampere-level current density of 1 A cm in 1 m KOH. Integrated in situ Raman and theoretical calculation unveil dual HER-enhancing mechanisms in Cu-MoNi: interfacial water restructuring activates O─H bond cleavage through electric-field-driven free water generation, while heterointerface charge redistribution synergistically lowers the dissociation barrier and optimizes hydrogen adsorption energy. When deployed as the cathode in an AEMWE device, the electrolyzer delivers industrial-grade current densities of 1 A and 3.2 A cm at low cell voltages of 1.74 and 2.0 V at 60 °C, respectively, while exhibiting durable operation over 1000 h at 500 mA cm. This study develops a scalable electrode fabrication protocol, advancing AEMWE technology for green hydrogen production within sustainable energy ecosystems.
集成高活性与操作耐久性的碱性析氢(HER)电催化剂的可扩展合成对于推动实用的阴离子交换膜水电解(AEMWE)至关重要。在此,通过自驱动电偶腐蚀耦合低温还原策略制备了垂直Cu-MoNi异质结构,避免了用于可扩展电极制备的水热方案。该催化剂在1 m KOH中1 A cm²的安培级电流密度下实现了276 mV的低过电位和长达2000 h的出色稳定性。原位拉曼光谱和理论计算相结合揭示了Cu-MoNi中两种增强析氢的机制:界面水重构通过电场驱动的自由水生成激活O─H键裂解,而异质界面电荷重新分布协同降低解离势垒并优化氢吸附能。当作为AEMWE装置的阴极部署时,该电解槽在60°C下分别在1.74 V和2.0 V的低电池电压下提供1 A和3.2 A cm²的工业级电流密度,同时在500 mA cm²下表现出超过1000 h的持久运行。本研究开发了一种可扩展的电极制备方案,推动了AEMWE技术在可持续能源生态系统中用于绿色制氢。