Suppr超能文献

用于阴离子交换膜水电解槽中绿色制氢的高性价比双金属催化剂

Cost-Effective Bimetallic Catalysts for Green H Production in Anion Exchange Membrane Water Electrolyzers.

作者信息

Campagna Zignani Sabrina, Fazio Marta, Pascale Mariarosaria, Alessandrello Chiara, Triolo Claudia, Musolino Maria Grazia, Santangelo Saveria

机构信息

Institute of Advanced Technologies for Energy (ITAE) of the National Research Council (CNR), 98126 Messina, Italy.

Department of Civil, Energy, Environmental and Materials Engineering (DICEAM), Mediterranean University of Reggio Calabria, 89122 Reggio Calabria, Italy.

出版信息

Nanomaterials (Basel). 2025 Jul 4;15(13):1042. doi: 10.3390/nano15131042.

Abstract

Green hydrogen production from water electrolysis (WE) is one of the most promising technologies to realize a decarbonized future and efficiently utilize intermittent renewable energy. Among the various WE technologies, the emerging anion exchange membrane (AEMWE) technology shows the greatest potential for producing green hydrogen at a competitive price. To achieve this goal, simple methods for the large-scale synthesis of efficient and low-cost electrocatalysts are needed. This paper proposes a very simple and scalable process for the synthesis of nanostructured NiCo- and NiFe-based electrode materials for a zero-gap AEMWE full cell. For the preparation of the cell anode, oxides with different Ni molar fractions (0.50 or 0.85) are synthesized by the sol-gel method, followed by calcination in air at different temperatures (400 or 800 °C). To fabricate the cell cathode, the oxides are reduced in a H/Ar atmosphere. Electrochemical testing reveals that phase purity and average crystal size significantly influence cell performance. Highly pure and finely grained electrocatalysts yield higher current densities at lower overpotentials. The best performing membrane electrode assembly exhibits a current density of 1 A cm at 2.15 V during a steady-state 150 h long stability test with 1 M KOH recirculating through the cell, the lowest series resistance at any cell potential (1.8 or 2.0 V), and the highest current density at the cut-off voltage (2.2 V) both at the beginning (1 A cm) and end of tests (1.78 A cm). The presented results pave the way to obtain, via simple and scalable techniques, cost-effective catalysts for the production of green hydrogen aimed at a wider market penetration by AEMWE.

摘要

通过水电解(WE)生产绿色氢气是实现脱碳未来并有效利用间歇性可再生能源最具前景的技术之一。在各种水电解技术中,新兴的阴离子交换膜水电解(AEMWE)技术在以具有竞争力的价格生产绿色氢气方面显示出最大潜力。为实现这一目标,需要用于大规模合成高效且低成本电催化剂的简单方法。本文提出了一种非常简单且可扩展的工艺,用于合成用于零间隙AEMWE全电池的纳米结构镍钴基和镍铁基电极材料。对于电池阳极的制备,通过溶胶 - 凝胶法合成具有不同镍摩尔分数(0.50或0.85)的氧化物,然后在空气中于不同温度(400或800℃)下煅烧。为制造电池阴极,将氧化物在氢气/氩气气氛中还原。电化学测试表明,相纯度和平均晶体尺寸对电池性能有显著影响。高纯度且细晶粒的电催化剂在较低过电位下产生更高的电流密度。性能最佳的膜电极组件在1 M KOH在电池中循环的150小时稳态稳定性测试期间,在2.15 V时的电流密度为1 A/cm²,在任何电池电位(1.8或2.0 V)下具有最低的串联电阻,并且在截止电压(2.2 V)下在测试开始时(1 A/cm²)和结束时(1.78 A/cm²)具有最高的电流密度。所呈现的结果为通过简单且可扩展的技术获得用于生产绿色氢气的具有成本效益的催化剂铺平了道路,旨在使AEMWE更广泛地渗透市场。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验