Navascués Paula, Kalemi Flaela, Zuber Flavia, Meier Philipp, Epasto Ludovica M, Góra Michał, Hanselmann Barbara, Kucher Svetlana, Bordignon Enrica, Ren Qun, Reina Giacomo, Hegemann Dirk
Laboratory for Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland.
Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland.
Small. 2025 Sep;21(35):e2502311. doi: 10.1002/smll.202502311. Epub 2025 Jul 11.
Reactive oxygen species (ROS) are promising green candidates for tackling challenges ranging from antimicrobial resistance to water decontamination. Metal oxide nanomaterials structured as thin films, deposited at room temperature (RT) using plasma technology, can deliver ROS to the environment by catalyzing oxygen and water following a chemodynamics approach. This study proposes thin film plasma polymerization as a strategy to precisely control ROS delivery, unravel ROS formation mechanism at the catalytic interface, and ensure ROS-driven chemistry. A proper combination of semiconductors, specifically silver oxide and titanium oxide, is used as a model system for ROS production. This specific coupling of semiconductors produces ROS in the dark due to charge separation without ion leaching. Plasma surface functionalization with nanoporous SiOx-like films in the 1-100 nm range allows selective control of the delivery of radicals with different characteristic lifetimes such as superoxide anion and singlet oxygen based on the thickness of the functional layer. As proof of promising applications, results regarding radicals' detection are correlated with the antimicrobial activity of the ROS-releasing system. Thin film plasma surface functionalization allows control of ROS delivery, ensuring that the material efficacy is due to ROS and not by other direct redox chemistry or leaching processes.
活性氧(ROS)是应对从抗微生物耐药性到水净化等各种挑战的有前景的绿色候选物。采用等离子体技术在室温(RT)下沉积的结构为薄膜的金属氧化物纳米材料,可以通过化学动力学方法催化氧气和水,将ROS释放到环境中。本研究提出薄膜等离子体聚合作为一种策略,以精确控制ROS的释放,揭示催化界面处ROS的形成机制,并确保由ROS驱动的化学反应。半导体的适当组合,特别是氧化银和氧化钛,被用作ROS产生的模型系统。这种特定的半导体耦合在黑暗中由于电荷分离而产生ROS,且无离子浸出。用1-100nm范围内的纳米多孔类SiOx薄膜进行等离子体表面功能化,可以根据功能层的厚度选择性地控制具有不同特征寿命的自由基(如超氧阴离子和单线态氧)的释放。作为有前景应用的证明,关于自由基检测的结果与ROS释放系统的抗菌活性相关。薄膜等离子体表面功能化允许控制ROS的释放,确保材料的功效是由于ROS,而不是其他直接的氧化还原化学或浸出过程。