Navascués Paula, Schütz Urs, Hanselmann Barbara, Hegemann Dirk
Laboratory for Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
Nanomaterials (Basel). 2024 Jan 15;14(2):195. doi: 10.3390/nano14020195.
As a new trend in plasma surface engineering, plasma conditions that allow more-defined chemical reactions at the surface are being increasingly investigated. This is achieved by avoiding high energy deposition via ion bombardment during direct plasma exposure (DPE) causing destruction, densification, and a broad variety of chemical reactions. In this work, a novel approach is introduced by placing a polymer mesh with large open area close to the plasma-sheath boundary above the plasma-treated sample, thus enabling near-plasma chemistry (NPC). The mesh size effectively extracts ions, while reactive neutrals, electrons, and photons still reach the sample surface. The beneficial impact of this on the plasma activation of poly (tetrafluoroethylene) (PTFE) to enhance wettability and on the plasma polymerization of siloxanes, combined with the etching of residual hydrocarbons to obtain highly porous SiOx coatings at low temperatures, is discussed. Characterization of the treated samples indicates a predominant chemical modification yielding enhanced film structures and durability.
作为等离子体表面工程的一种新趋势,能够在表面实现更明确化学反应的等离子体条件正受到越来越多的研究。这是通过在直接等离子体暴露(DPE)过程中避免因离子轰击而产生的高能沉积来实现的,这种高能沉积会导致材料破坏、致密化以及各种各样的化学反应。在这项工作中,引入了一种新方法,即在等离子体处理的样品上方靠近等离子体鞘层边界处放置一个具有大开口面积的聚合物网,从而实现近等离子体化学(NPC)。网孔尺寸有效地提取了离子,而反应性中性粒子、电子和光子仍能到达样品表面。本文讨论了这一方法对聚四氟乙烯(PTFE)等离子体活化以提高润湿性、对硅氧烷等离子体聚合的有益影响,以及结合蚀刻残留碳氢化合物以在低温下获得高度多孔的SiOₓ涂层的影响。对处理后样品的表征表明,主要发生了化学改性,从而产生了增强的薄膜结构和耐久性。