Lange Christoph, Seidel Simon, Altmann Madeline, Stors Daniel, Kemmer Annina, Cai Linda, Born Stefan, Neubauer Peter, Bournazou M Nicolas Cruz
Chair of Bioprocess Engineering, Technische Universität Berlin, Berlin, Germany.
Orientierungsstudium MINTgrün, Technische Universität Berlin, Berlin, Germany.
Biotechnol Bioeng. 2025 Oct;122(10):2751-2769. doi: 10.1002/bit.70006. Epub 2025 Jul 11.
High-throughput (HT) experimentation is transforming biotechnology by enabling systematic exploration of complex multi-dimensional experimental conditions. However, current analytical methods are often unable to handle the rapid pace of sample generation in HT workflows. This study presents an integrated system of physical devices and software to automate and accelerate Raman spectral measurements in HT-facilities. The setup simultaneously handles eight parallel L samples delivered by a pipetting robot, completing measurement, handling, cleaning, and concentration prediction within 45 s per sample. We introduce a machine learning model to predict metabolite concentrations from Raman spectra, achieving mean absolute errors of for glucose and for acetate during Escherichia coli cultivations. This approach enables consistent high-throughput spectral data collection for fermentation monitoring, calibration, and offline analysis, supporting the generation of extensive datasets, enabling the training of more robust and generalizable machine learning models.
高通量(HT)实验通过能够系统地探索复杂的多维实验条件,正在改变生物技术。然而,当前的分析方法往往无法应对高通量工作流程中快速的样本生成速度。本研究提出了一个由物理设备和软件组成的集成系统,以实现高通量设施中拉曼光谱测量的自动化和加速。该装置同时处理由移液机器人输送的八个平行样本,每个样本在45秒内完成测量、处理、清洗和浓度预测。我们引入了一个机器学习模型,从拉曼光谱预测代谢物浓度,在大肠杆菌培养过程中,葡萄糖和乙酸盐的平均绝对误差分别为[具体数值未给出]。这种方法能够为发酵监测、校准和离线分析持续收集高通量光谱数据,支持生成大量数据集,从而能够训练更强大、更具通用性的机器学习模型。