Kim Jaeseok, Jeong Hyunwoo, Lee Jae Hyuk, Ma Rory, Nam Daewoong, Kim Minseok, Jang Dogeun, Kim Jong Goo
Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea.
Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea.
Struct Dyn. 2025 Jul 9;12(4):044901. doi: 10.1063/4.0000764. eCollection 2025 Jul.
Time-resolved x-ray liquidography (TRXL) is a powerful technique for directly tracking ultrafast structural dynamics in real space. However, resolving the motion of vibrational wavepackets generated by femtosecond laser pulses remains challenging due to the limited temporal resolution and signal-to-noise ratio (SNR) of experimental data. This study addresses these challenges by introducing singular spectrum analysis (SSA) as an efficient method for extracting oscillatory signals associated with vibrational wavepackets from TRXL data. To evaluate its performance, we conducted a comparative study using simulated TRXL data, demonstrating that SSA outperforms conventional analysis methods such as the Fourier transform of temporal profiles and singular value decomposition, particularly under low SNR conditions. We further applied SSA to experimental TRXL data on the photodissociation of triiodide ( ) in methanol, successfully isolating oscillatory signals arising from wavepacket dynamics in ground-state and excited-state , which had been challenging to resolve in previous TRXL studies. These results establish SSA as a highly effective tool for analyzing ultrafast structural dynamics in time-resolved experiments and open new opportunities for studying wavepacket dynamics in a wide range of photoinduced reactions.
时间分辨X射线液体成像(TRXL)是一种在真实空间中直接追踪超快结构动力学的强大技术。然而,由于实验数据的时间分辨率和信噪比(SNR)有限,解析飞秒激光脉冲产生的振动波包的运动仍然具有挑战性。本研究通过引入奇异谱分析(SSA)来解决这些挑战,奇异谱分析是一种从TRXL数据中提取与振动波包相关的振荡信号的有效方法。为了评估其性能,我们使用模拟的TRXL数据进行了一项比较研究,结果表明,SSA优于传统分析方法,如时间轮廓的傅里叶变换和奇异值分解,特别是在低信噪比条件下。我们进一步将SSA应用于甲醇中三碘化物( )光解离的实验TRXL数据,成功分离出基态 和激发态 中波包动力学产生的振荡信号,这在以前的TRXL研究中一直难以解析。这些结果确立了SSA作为时间分辨实验中分析超快结构动力学的高效工具,并为研究广泛的光诱导反应中的波包动力学开辟了新机会。