Suppr超能文献

一种整合舌象特征与心肌损伤标志物的机器学习模型可预测冠心病患者的主要不良心血管事件。

A Machine Learning Model Integrating Tongue Image Features and Myocardial Injury Markers Predicts Major Adverse Cardiovascular Events in Patients with Coronary Heart Disease.

作者信息

Zhou Mi, Li Jieyun, Lim Jiekee, Xiao Xinang, Xia Yumo, Wang Qingsheng, Xu Zhaoxia

机构信息

School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.

Shanghai Anji Outpatient Department, Shanghai, 201203, People's Republic of China.

出版信息

Int J Gen Med. 2025 Jul 5;18:3739-3765. doi: 10.2147/IJGM.S531806. eCollection 2025.

Abstract

OBJECTIVE

The aim of this retrospective cohort study was to analyse the relationship between markers of myocardial injury, tongue parameters and major adverse cardiovascular events (MACE) in 1293 patients diagnosed with coronary heart disease(CHD).

METHODS

This was a retrospective cohort study in which data were collected from patients diagnosed with CHD at the Department of Cardiology of Yueyang Hospital of Integrative Medicine and Shuguang Hospital in Shanghai, China, between 1 January 2023 and 31 December 2024, etc. All the patients were classified into two different groups according to follow-up results showed whether there was MACE, and the tongue image of each patient was performed using SMX System 2.0 to normalised acquisition was performed using SMX System 2.0, and tongue body (TC_) and tongue coating (CC_) data were converted to RGB and HSV model parameters. Five supervised machine learning classifiers, including XGBoost, logistic regression, KNN, LightGBM, AdaBoost, were used in building the MACE prediction model.

RESULTS

1293 patients were finally included in this study, with MACE occurred in 279 (21.6%) participants. After sample balancing using the SMOTE method, non-parametric tests revealed significant differences in imaging indicators, some myocardial injury markers, and tongue image parameters between the 2 groups of patients:LDH,MYO,TC_ROOT_R,TC_ROOT_G (<0.05); the XGBoost, LightGBM models had the highest predictive power (The AUC values of the verification set > 0.97); the combination of SHAP values revealed the importance of the features and provided a quantitative metric to assess the contribution of each feature to the prediction results, Finally, subgroup analysis was conducted based on specific events of MACE.

CONCLUSION

This study provides insight into the potential application of myocardial injury markers, tongue colour parameters, in the prediction of MACE, and future studies could extend the optimisation of the prediction model and explore its application in other cardiovascular diseases.

摘要

目的

这项回顾性队列研究的目的是分析1293例冠心病(CHD)患者心肌损伤标志物、舌象参数与主要不良心血管事件(MACE)之间的关系。

方法

这是一项回顾性队列研究,收集了2023年1月1日至2024年12月31日期间在中国上海岳阳中西医结合医院和曙光医院心内科诊断为CHD的患者的数据等。所有患者根据随访结果是否发生MACE分为两个不同组,使用SMX System 2.0对每位患者的舌象进行标准化采集,并将舌体(TC_)和舌苔(CC_)数据转换为RGB和HSV模型参数。使用包括XGBoost、逻辑回归、K近邻、LightGBM、AdaBoost在内的五种监督式机器学习分类器构建MACE预测模型。

结果

本研究最终纳入1293例患者,其中279例(21.6%)发生MACE。使用SMOTE方法进行样本均衡后,非参数检验显示两组患者在影像学指标、一些心肌损伤标志物和舌象参数方面存在显著差异:乳酸脱氢酶(LDH)、肌红蛋白(MYO)、舌体根部红色值(TC_ROOT_R)、舌体根部绿色值(TC_ROOT_G)(<0.05);XGBoost和LightGBM模型具有最高的预测能力(验证集的曲线下面积值>0.97);SHAP值的组合揭示了特征的重要性,并提供了一个定量指标来评估每个特征对预测结果的贡献,最后,基于MACE的特定事件进行了亚组分析。

结论

本研究为心肌损伤标志物、舌色参数在MACE预测中的潜在应用提供了见解,未来的研究可以扩展预测模型的优化,并探索其在其他心血管疾病中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验