Geyer Veikko F, Howard Jonathon, Sartori Pablo
B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany.
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
Nat Phys. 2022 Mar;18(3):332-337. doi: 10.1038/s41567-021-01446-2. Epub 2022 Jan 10.
Biological systems are robust to perturbations at both the genetic and environmental levels, although these same perturbations can elicit variation in behaviour. The interplay between functional robustness and behavioural variability is exemplified at the organellar level by the beating of cilia and flagella. Cilia are motile despite wide genetic diversity between and within species, differences in intracellular concentrations of ATP and calcium, and considerable environment fluctuations in temperature and viscosity. At the same time, these perturbations result in a variety of spatio-temporal patterns that span a rich behavioural space. To investigate this behavioural space we analysed the dynamics of isolated cilia from the unicellular algae under many different environmental and genetic conditions. We found that, despite large changes in beat frequency and amplitude, the space of waveform shapes is low-dimensional in the sense that two features account for 80% of the observed variation. The geometry of this behavioural space accords with the predictions of a simple mechanochemical model in the low-viscosity regime. This allowed us to associate waveform shape variability with changes in only the curvature response coefficients of the dynein motors.
生物系统在基因和环境层面都对扰动具有稳健性,尽管这些相同的扰动会引发行为上的变化。在细胞器层面,纤毛和鞭毛的摆动体现了功能稳健性与行为变异性之间的相互作用。尽管物种之间和物种内部存在广泛的基因多样性、细胞内ATP和钙浓度的差异以及温度和粘度方面相当大的环境波动,但纤毛仍能运动。同时,这些扰动会导致各种跨越丰富行为空间的时空模式。为了研究这个行为空间,我们在许多不同的环境和基因条件下分析了单细胞藻类分离纤毛的动力学。我们发现,尽管摆动频率和幅度有很大变化,但波形形状的空间是低维的,即两个特征占观察到的变化的80%。在低粘度状态下,这个行为空间的几何形状符合一个简单的机械化学模型的预测。这使我们能够将波形形状的变异性仅与动力蛋白马达的曲率响应系数的变化联系起来。