Kindler Urs, Mavrommatis Lampros, Käppler Franziska, Hiluf Dalya Gebrehiwet, Heilmann-Heimbach Stefanie, Marcus Katrin, Günther Pomorski Thomas, Vorgerd Matthias, Brand-Saberi Beate, Zaehres Holm
Department of Anatomy and Molecular Embryology, Institute of Anatomy, Faculty of Medicine, Ruhr University Bochum, 44801 Bochum, NRW, Germany.
Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, NRW, Germany.
Cells. 2025 Jul 7;14(13):1033. doi: 10.3390/cells14131033.
BACKGROUND: Duchenne muscular dystrophy (DMD), which affects 1 in 3500 to 5000 newborn boys worldwide, is characterized by progressive skeletal muscle weakness and degeneration. The reduced muscle regeneration capacity presented by patients is associated with increased fibrosis. Satellite cells (SCs) are skeletal muscle stem cells that play an important role in adult muscle maintenance and regeneration. The absence or mutation of dystrophin in DMD is hypothesized to impair SC asymmetric division, leading to cell cycle arrest. METHODS: To overcome the limited availability of biopsies from DMD patients, we used our 3D skeletal muscle organoid (SMO) system, which delivers a stable population of myogenic progenitors (MPs) in dormant, activated, and committed stages, to perform SMO cultures using three DMD patient-derived iPSC lines. RESULTS: The results of scRNA-seq analysis of three DMD SMO cultures versus two healthy, non-isogenic, SMO cultures indicate reduced MP populations with constant activation and differentiation, trending toward embryonic and immature myotubes. Mapping our data onto the human myogenic reference atlas, together with primary SC scRNA-seq data, indicated a more immature developmental stage of DMD organoid-derived MPs. DMD fibro-adipogenic progenitors (FAPs) appear to be activated in SMOs. CONCLUSIONS: Our organoid system provides a promising model for studying muscular dystrophies in vitro, especially in the case of early developmental onset, and a methodology for overcoming the bottleneck of limited patient material for skeletal muscle disease modeling.
背景:杜氏肌营养不良症(DMD)在全球每3500至5000名新生男婴中就有1例患病,其特征为进行性骨骼肌无力和退化。患者肌肉再生能力下降与纤维化增加有关。卫星细胞(SCs)是骨骼肌干细胞,在成体肌肉维持和再生中起重要作用。据推测,DMD中肌营养不良蛋白的缺失或突变会损害卫星细胞的不对称分裂,导致细胞周期停滞。 方法:为克服DMD患者活检样本有限的问题,我们使用了3D骨骼肌类器官(SMO)系统,该系统可提供处于休眠、激活和分化阶段的稳定成肌祖细胞(MPs)群体,以使用三个DMD患者来源的诱导多能干细胞(iPSC)系进行SMO培养。 结果:对三种DMD SMO培养物与两种健康、非同源的SMO培养物进行的单细胞RNA测序(scRNA-seq)分析结果表明,MP群体减少,且持续激活和分化,趋向于胚胎期和未成熟的肌管。将我们的数据映射到人类成肌参考图谱上,结合原代卫星细胞scRNA-seq数据,表明DMD类器官来源的MPs处于更不成熟的发育阶段。DMD纤维脂肪生成祖细胞(FAPs)似乎在SMO中被激活。 结论:我们的类器官系统为体外研究肌营养不良症提供了一个有前景的模型,特别是在早期发病的情况下,并且提供了一种克服骨骼肌疾病建模中患者材料有限这一瓶颈的方法。
J Cachexia Sarcopenia Muscle. 2025-8
Cochrane Database Syst Rev. 2021-12-1
Cochrane Database Syst Rev. 2021-11-8
Cochrane Database Syst Rev. 2016-5-5
Am J Physiol Cell Physiol. 2025-7-1
Cochrane Database Syst Rev. 2008-1-23
Bio Protoc. 2024-5-5
Commun Biol. 2023-1-13
J Cachexia Sarcopenia Muscle. 2022-12
Neuromuscul Disord. 2021-12