Suppr超能文献

神经网络方法,包括使用拓扑数据分析,可根据处理条件增强对人类诱导多能干细胞集落的分类。

Neural network approaches, including use of topological data analysis, enhance classification of human induced pluripotent stem cell colonies by treatment condition.

作者信息

de Perez Alexander Ruys, Anderson Paul E, Dimitrova Elena S, Kemp Melissa L

机构信息

Mathematics Department, Bailey College of Science and Mathematics, California Polytechnic State University - San Luis Obispo, San Luis Obispo, California, United States of America.

School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia, United States of America.

出版信息

PLoS Comput Biol. 2025 Jul 11;21(7):e1012801. doi: 10.1371/journal.pcbi.1012801. eCollection 2025 Jul.

Abstract

Understanding how stem cells organize to form early tissue layers remains an important open question in developmental biology. Helpful in understanding this process are biomarkers or features that signal when a significant transition or decision occurs. We show such features from the spatial layout of the cells in a colony are sufficient to train neural networks to classify stem cell colonies according to differentiation protocol treatments each colony has received. We use topological data analysis to derive input information about the cells' positions to a four-layer feedforward neural network. We find that despite the simplicity of this approach, such a network has performance similar to the traditional image classifier ResNet. We also find that network performance may reveal the time window during which differentiation occurs across multiple conditions.

摘要

了解干细胞如何组织形成早期组织层仍然是发育生物学中一个重要的悬而未决的问题。有助于理解这一过程的是生物标志物或特征,它们能在发生重大转变或决策时发出信号。我们表明,来自集落中细胞空间布局的此类特征足以训练神经网络,根据每个集落所接受的分化方案处理对干细胞集落进行分类。我们使用拓扑数据分析来推导关于细胞位置的输入信息,输入到一个四层前馈神经网络中。我们发现,尽管这种方法很简单,但这样的网络性能与传统图像分类器ResNet相似。我们还发现,网络性能可能揭示了在多种条件下发生分化的时间窗口。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838b/12270303/7794fd4a32f5/pcbi.1012801.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验