Zhao Mengchuan, Xiang Yi, Yang Yan, Deng K E
School of Mathematics, Sichuan University, Chengdu, Sichuan, China.
School of Mathematics and Statistics, Sichuan University of Science & Engineering, Zigong, Sichuan, China.
PLoS One. 2025 Jul 11;20(7):e0327395. doi: 10.1371/journal.pone.0327395. eCollection 2025.
The effectiveness of the q-rung ortho-pair fuzzy multi-attribute decision-making method is primarily influenced by the q-rung ortho-pair fuzzy number ranking method. This paper conducts an in-depth analysis of the shortcomings of eight existing q-rung ortho-pair fuzzy number ranking methods. A refined approach to ranking q-rung ortho-pair fuzzy numbers is proposed, wherein the method synthesizes the effects of the q-power transformation applied to both membership and non-membership degrees, alongside an exponential adjustment component. This formulation ensures greater discrimination power and robustness in uncertain environments. This method addresses the issues of poor robustness and the inability to achieve a complete ranking in existing approaches. Finally, the proposed ranking approach is incorporated into a q-rung orthopair fuzzy multi-attribute decision-making framework and is subsequently employed to address a practical case involving the selection of an optimal warehouse location for an e-commerce enterprise.
q阶正交对模糊多属性决策方法的有效性主要受q阶正交对模糊数排序方法的影响。本文深入分析了现有的八种q阶正交对模糊数排序方法的缺点。提出了一种改进的q阶正交对模糊数排序方法,该方法综合了应用于隶属度和非隶属度的q次幂变换的效果以及一个指数调整分量。这种公式确保了在不确定环境中具有更大的区分能力和鲁棒性。该方法解决了现有方法中鲁棒性差和无法实现完整排序的问题。最后,将所提出的排序方法纳入q阶正交对模糊多属性决策框架,并随后用于解决一个实际案例,即电商企业最优仓库选址的选择。