Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA.
Science. 2022 Jul 29;377(6605):535-539. doi: 10.1126/science.abo4628. Epub 2022 Jul 28.
Covalent modification of carbon nanotubes is a promising strategy for engineering their electronic structures. However, keeping modification sites in registration with a nanotube lattice is challenging. We report a solution using DNA-directed, guanine (G)-specific cross-linking chemistry. Through DNA screening we identify a sequence, CGCGC, whose reaction with an (8,3) enantiomer yields minimum disorder-induced Raman mode intensities and photoluminescence Stokes shift, suggesting ordered defect array formation. Single-particle cryo-electron microscopy shows that the CGCGC functionalized (8,3) has an ordered helical structure with a 6.5 angstroms periodicity. Reaction mechanism analysis suggests that the helical periodicity arises from an array of G-modified carbon-carbon bonds separated by a fixed distance along an armchair helical line. Our findings may be used to remodel nanotube lattices for novel electronic properties.
碳纳米管的共价修饰是工程化其电子结构的一种很有前途的策略。然而,使修饰位点与纳米管晶格保持一致是具有挑战性的。我们报告了一种使用 DNA 指导的鸟嘌呤 (G) 特异性交联化学的解决方案。通过 DNA 筛选,我们鉴定出一个序列 CGCGC,其与(8,3)对映体反应产生最小的无序诱导拉曼模式强度和光致发光斯托克斯位移,表明有序缺陷阵列的形成。单颗粒低温电子显微镜表明,CGCGC 功能化的(8,3)具有有序的螺旋结构,其具有 6.5 埃的周期性。反应机制分析表明,螺旋周期性是由沿扶手椅螺旋线以固定距离隔开的一系列 G 修饰的碳-碳键阵列引起的。我们的发现可用于重塑纳米管晶格以获得新的电子特性。