Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States.
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
J Am Chem Soc. 2024 Apr 3;146(13):8826-8831. doi: 10.1021/jacs.3c14784. Epub 2024 Mar 25.
Atomic defect color centers in solid-state systems hold immense potential to advance various quantum technologies. However, the fabrication of high-quality, densely packed defects presents a significant challenge. Herein we introduce a DNA-programmable photochemical approach for creating organic color-center quantum defects on semiconducting single-walled carbon nanotubes (SWCNTs). Key to this precision defect chemistry is the strategic substitution of thymine with halogenated uracil in DNA strands that are orderly wrapped around the nanotube. Photochemical activation of the reactive uracil initiates the formation of sp defects along the nanotube as deep exciton traps, with a pronounced photoluminescence shift from the nanotube band gap emission (by 191 meV for (6,5)-SWCNTs). Furthermore, by altering the DNA spacers, we achieve systematic control over the defect placements along the nanotube. This method, bridging advanced molecular chemistry with quantum materials science, marks a crucial step in crafting quantum defects for critical applications in quantum information science, imaging, and sensing.
固态系统中的原子缺陷色心在推进各种量子技术方面具有巨大的潜力。然而,制造高质量、高密度的缺陷仍然是一个重大挑战。在此,我们介绍了一种 DNA 可编程的光化学方法,用于在半导体单壁碳纳米管(SWCNTs)上创建有机色心量子缺陷。这种精确的缺陷化学的关键是在 DNA 链中用卤素取代胸腺嘧啶,这些 DNA 链有序地包裹在纳米管周围。光化学反应性尿嘧啶的激活沿纳米管形成 sp 缺陷,作为深激子陷阱,与纳米管带隙发射的明显光致发光位移(对于(6,5)-SWCNTs,为 191 meV)。此外,通过改变 DNA 间隔物,我们实现了对纳米管上缺陷位置的系统控制。这种将先进的分子化学与量子材料科学相结合的方法,为在量子信息科学、成像和传感等关键应用中构建量子缺陷迈出了关键一步。