Viti Michael A, Li Zhi, Laing Craig C, Wolverton Christopher, Kanatzidis Mercouri G
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.
Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.
J Am Chem Soc. 2025 Jul 23;147(29):25350-25360. doi: 10.1021/jacs.5c04520. Epub 2025 Jul 11.
We introduce 15 new members to the AMTiQ family (A = K, Rb, Cs; M = Cu, Ag; Q = S, Se, Te; = 0 - 1) of semiconductors, for which all compositions afford the ThCrSi structure-type with two-dimensional (2D) [MTiQ] layers. We unveil how A, M, Q, and the vacancies inherent to the [MTiQ] layers serve as four tunable compositional variables that influence both the local atomic and electronic structures with systematic impacts on the optoelectronic and thermal properties in a predictable manner. Namely, increased distortion within the [MTiQ] layers occurs when M = Ag, lowering the melting temperatures of all Ag compounds relative to their Cu counterparts for a given Q. The electronic structures are primarily influenced by Q, with a substitution of S → Se → Te narrowing the average band gaps from 2.30 → 1.49 → 0.74 eV. For a given Q, however, Ag lowers the energy of the valence band maximum (VBM) compared to Cu, and relative to vacuum. Increasing the Ag/Ti ratio inserts additional Ag into the inherent vacancies within the [AgTiS] layers of CsAgTiS compared to CsAgTiS, raising the valence band maximum from -5.26 → -4.83 eV, which in turn narrows the band gap from 2.48 → 1.85 eV. Such broad ranges in thermal and optoelectronic properties within this family provide interest for diverse applications. Moreover, because this work establishes the influences of A, M, Q, and the inherent vacancies on properties for a constant structure-type, all composition-property relationships should apply to other structure-types containing any of these elements or inherent vacancies.
我们向AMTiQ半导体家族(A = K、Rb、Cs;M = Cu、Ag;Q = S、Se、Te;δ = 0 - 1)引入了15个新成员,该家族所有成分都具有二维(2D)[MTiQ]层的ThCrSi结构类型。我们揭示了A、M、Q以及[MTiQ]层固有的空位如何作为四个可调节的成分变量,以可预测的方式影响局部原子结构和电子结构,并对光电和热性能产生系统性影响。具体而言,当M = Ag时,[MTiQ]层内的畸变增加,对于给定的Q,所有Ag化合物的熔点相对于其Cu对应物降低。电子结构主要受Q影响,用S → Se → Te替代会使平均带隙从2.30 → 1.49 → 0.74 eV变窄。然而,对于给定的Q,与Cu相比,Ag降低了价带最大值(VBM)的能量,并且相对于真空也是如此。与CsAgTiS相比,增加Ag/Ti比会将额外的Ag插入CsAgTiS的[AgTiS]层内的固有空位中,使价带最大值从 -5.26 → -4.83 eV升高,这反过来又使带隙从2.48 → 1.85 eV变窄。该家族内热性能和光电性能的如此广泛范围为各种应用提供了吸引力。此外,由于这项工作确定了A、M、Q和固有空位对恒定结构类型性能的影响,所有成分 - 性能关系都应适用于包含这些元素或固有空位中任何一种的其他结构类型。