Suppr超能文献

脑电图信号中的情感识别:深度学习和机器学习方法、挑战及未来方向。

Emotion recognition in EEG Signals: Deep and machine learning approaches, challenges, and future directions.

作者信息

Al-Hadithy Samara S, Abdalkafor Ahmed Subhi, Al-Khateeb Belal

机构信息

College of Computer Science and Information Technology, University of Anbar, Iraq.

出版信息

Comput Biol Med. 2025 Sep;196(Pt A):110713. doi: 10.1016/j.compbiomed.2025.110713. Epub 2025 Jul 11.

Abstract

A crucial part of brain-computer interfaces is the use of electroencephalogram (EEG) signals for human emotion identification, which analyzes patterns of brain activity to determine the emotional state. This field of study is becoming increasingly important for developing advanced applications that enhance brain machine interaction and improve brain health assessment systems. However, EEG signal analysis faces significant challenges due to their subject-specific nature, high noise levels, and the scarcity of high-quality labeled data, which collectively limit model generalizability and complicate signal analysis. Traditional approaches have employed handcrafted features with Support Vector Machines (SVM), K-Nearest Neighbors (KNN), and Random Forests (RF) for EEG feature extraction and classification. Recent advances in deep learning, particularly Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), enable automatic feature learning from raw data to extract temporal, spatial, and spectral properties. The study employs a literature review approach and the analysis of the popular datasets (e.g., DEAP, SEED, AMIGOS). Despite technological advances, the fundamental challenges of noisy subject variability, and limited labeled data persist, requiring future research to focus on improving model robustness, scalability, and interpretability while addressing current limitations.

摘要

脑机接口的一个关键部分是利用脑电图(EEG)信号进行人类情绪识别,即分析大脑活动模式以确定情绪状态。这一研究领域对于开发增强脑机交互和改进脑健康评估系统的先进应用变得越来越重要。然而,由于EEG信号具有个体特异性、噪声水平高以及高质量标注数据稀缺等特点,EEG信号分析面临重大挑战,这些因素共同限制了模型的通用性并使信号分析复杂化。传统方法采用手工特征,结合支持向量机(SVM)、K近邻(KNN)和随机森林(RF)进行EEG特征提取和分类。深度学习的最新进展,特别是卷积神经网络(CNN)和循环神经网络(RNN),能够从原始数据中自动学习特征,以提取时间、空间和频谱特性。该研究采用文献综述方法以及对流行数据集(如DEAP、SEED、AMIGOS)的分析。尽管有技术进步,但噪声引起的个体差异和有限的标注数据等基本挑战仍然存在,这要求未来的研究在解决当前局限性时专注于提高模型的鲁棒性、可扩展性和可解释性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验