Suppr超能文献

解析环境条件下金属卤化物钙钛矿薄膜的热降解途径。

Deciphering thermal degradation pathways of metal halide perovskite thin films under ambient conditions.

作者信息

Zhang Huiting, Mao Zhu, Ma Yitian, Zhang Yan, Wang Jiayi, Huang Zhijian, Shi Xiumin, Xue Xiangxin, Zhao Bing, Jung Young Mee

机构信息

School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.

School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.

出版信息

J Colloid Interface Sci. 2025 Dec 15;700(Pt 1):138341. doi: 10.1016/j.jcis.2025.138341. Epub 2025 Jul 5.

Abstract

Understanding the dynamic lattice collapse pathways under thermal stress is pivotal for designing stable perovskite and improving the power conversion efficiency (PCE) of perovskite solar cells (PSCs). However, the lack of dynamic molecular-level characterization techniques has limited a comprehensive understanding of the degradation pathways involved. In this study, we use temperature-dependent Raman spectroscopy (25-375 °C) coupled with multimodal characterization to investigate A-site cation-dependent degradation pathways in mixed-halide perovskites, specifically FACsPbI (FACs) and FAMAPbI (FAMA). We identify three distinct stages of thermal decomposition dynamics with molecular-level precision: (1) grain boundary pre-collapse (25-175 °C), (2) halide segregation and PbI framework dynamics (200-325 °C), including PbI-defective domains, PbI formation, and PbI degradation, and (3) terminal lattice disintegration (350-375 °C). FACs preferentially stabilizes CsPbI₃ nanorods alongside amorphous β-PbO, whereas FAMA exclusively generates crystalline β-PbO without intermediate phases. Mechanistically, Cs acts as a lattice "scaffold", facilitating dynamic Pb-I-Cs coordination reconfiguration and delaying the degradation of the perovskite by more than 25 °C. In contrast, MA induces abrupt structural collapse via methylammonium volatilization, creating vacancy-propagated disintegration channels. By correlating Raman fingerprint (e.g., β-PbO at 139 cm) with XRD/PL decay kinetics, we establish a predictive framework for A-site cation selection. This study not only reveals the mechanism of lattice anchoring and dynamic coordination reconstruction regulated by A-site cations at the molecular level but also clarifies the previously ambiguous Raman band assignments. These findings highlight the potential of Raman spectroscopy as a dynamic roadmap for elucidating degradation mechanisms and guiding the design of thermally resilient perovskites.

摘要

了解热应力下动态晶格坍塌途径对于设计稳定的钙钛矿和提高钙钛矿太阳能电池(PSC)的功率转换效率(PCE)至关重要。然而,缺乏动态分子水平表征技术限制了对所涉及降解途径的全面理解。在本研究中,我们使用温度依赖拉曼光谱(25 - 375°C)结合多模态表征来研究混合卤化物钙钛矿中A位阳离子依赖性降解途径,特别是FACsPbI(FACs)和FAMAPbI(FAMA)。我们以分子水平精度确定了热分解动力学的三个不同阶段:(1)晶界预坍塌(25 - 175°C),(2)卤化物偏析和PbI框架动力学(200 - 325°C),包括PbI缺陷域、PbI形成和PbI降解,以及(3)最终晶格解体(350 - 375°C)。FACs优先与非晶态β - PbO一起稳定CsPbI₃纳米棒,而FAMA仅生成结晶β - PbO且无中间相。从机制上讲,Cs充当晶格“支架”,促进动态Pb - I - Cs配位重构,并将钙钛矿的降解延迟超过25°C。相比之下,MA通过甲铵挥发诱导突然的结构坍塌,形成空位传播的解体通道。通过将拉曼指纹(例如,139 cm处的β - PbO)与XRD/PL衰减动力学相关联,我们建立了A位阳离子选择的预测框架。本研究不仅在分子水平上揭示了A位阳离子调节晶格锚固和动态配位重构的机制,还澄清了先前模糊的拉曼谱带归属。这些发现突出了拉曼光谱作为阐明降解机制和指导热稳定钙钛矿设计的动态路线图的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验