Nie Riming, Dai Yiming, Wang Ruiqin, Li Luyao, Park Byung-Wook, Chu Weicun, Wang Cheng, Li Zhongping, Chen Shanshan, Qiao Ruixi, Yin Lixiong, Seok Sang Il
State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China.
Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulju-gun, Ulsan, Republic of Korea.
Nat Commun. 2025 Aug 9;16(1):7343. doi: 10.1038/s41467-025-62125-x.
Achieving long-term stability in halide perovskite solar cells (PSCs) remains challenging due to their susceptibility to environmental degradation. Enhancing material stability at the intrinsic level offers a pathway to more durable solutions. This study addresses the instability of halide perovskites by enhancing ionic binding energy and alleviating lattice strain through the mixed metal chalcohalide into formamidinium lead tri-iodide (FAPbI₃). Specifically, trivalent antimony (Sb³⁺) and divalent sulfur ions (S²⁻)-alloyed FAPbI₃ thin films are formed using a sequential ambient-air process, applying a formamidinium iodide (FAI) solution over a spin-coated SbCl₃-thiourea (Sb-TU) complex with PbI₂ at 150 °C. The introduced Sb³⁺ and S²⁻ ions promote α(200)c crystal growth of FAPbI and minimize lattice strains that drive humidity- and thermal-induced degradation. Optimized PSCs based on Sb³⁺ and S²⁻ alloyed-FAPbI₃ achieve a power conversion efficiency (PCE) of 25.07% under standard conditions, comparable to the highest PCE of PSCs fabricated in the atmosphere. The unencapsulated Sb and S-alloyed FAPbI PSCs retain approximately 94.9% of the initial PCE after 1080 h of storage in the dark (20-40% relative humidity, 25 °C). This work pioneers the simultaneous alloying of trivalent Sb and divalent S into FAPbI, establishing a compositional-engineering strategy for more efficient and stable PSCs.
由于卤化物钙钛矿太阳能电池(PSC)易受环境降解影响,实现其长期稳定性仍具有挑战性。在本征层面提高材料稳定性为更持久的解决方案提供了一条途径。本研究通过混合金属卤硫化物引入甲脒铅三碘化物(FAPbI₃)中,增强离子结合能并减轻晶格应变,来解决卤化物钙钛矿的不稳定性问题。具体而言,采用顺序式环境空气工艺,在150°C下将碘化甲脒(FAI)溶液涂覆在旋涂有PbI₂的SbCl₃-硫脲(Sb-TU)络合物上,形成三价锑(Sb³⁺)和二价硫离子(S²⁻)合金化的FAPbI₃薄膜。引入的Sb³⁺和S²⁻离子促进了FAPbI的α(200)c晶体生长,并使驱动湿度和热诱导降解的晶格应变最小化。基于Sb³⁺和S²⁻合金化FAPbI₃的优化PSC在标准条件下实现了25.07%的功率转换效率(PCE),与在大气中制备的PSC的最高PCE相当。未封装的Sb和S合金化FAPbI PSC在黑暗中(相对湿度20 - 40%,25°C)储存1080小时后,仍保留约94.9%的初始PCE。这项工作开创了将三价Sb和二价S同时合金化到FAPbI中的先河,为更高效和稳定的PSC建立了一种成分工程策略。