Dehghan Ali, Chen Jiali, Jiang Wei
School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China.
J Phys Condens Matter. 2025 Jul 24;37(30). doi: 10.1088/1361-648X/adeef0.
This review presents a comprehensive analysis of recent advances in enhancing the intrinsic spin Hall effect (SHE) in emergent quantum materials, including chiral crystals and topological materials, by leveraging their shared symmetry-breaking features and spin-orbit coupling (SOC)-driven phenomena. The SHE, a transformative mechanism for magnetic-field-free charge-to-spin interconversion, lies at the heart of energy-efficient spintronics. Chiral crystals, with their inherent structural handedness and broken inversion symmetry, synergize with topological materials-such as Weyl semimetals and insulators-to amplify SHE through distinct yet complementary mechanisms. These include chiral spin textures, Weyl/Dirac fermions, band-inversion-induced Berry curvature hotspots, and protected surface or hinge states, all governed by strong SOC and unique spin-momentum locking. We systematically analyze how the interplay of symmetry, topology, and electronic structure in these materials creates unprecedented opportunities for SHE enhancement, supported by breakthroughs in computational design (e.g.Berry curvature engineering) and experimental strategies such as strain, alloying, and heterostructuring. Critical challenges, including the SOC-diffusion length trade-off and the need to harness magnetic or low-symmetry phases, are discussed in the context of material optimization. By unifying insights from chiral and topological systems, this review charts a roadmap for transcending conventional spin current generation paradigms and advancing scalable spintronic technologies.
本综述全面分析了通过利用新兴量子材料(包括手性晶体和拓扑材料)中共同的对称性破缺特征和自旋轨道耦合(SOC)驱动的现象来增强其固有自旋霍尔效应(SHE)的最新进展。自旋霍尔效应是一种无磁场的电荷到自旋相互转换的变革性机制,是节能自旋电子学的核心。手性晶体具有固有的结构手性和破缺的反演对称性,与拓扑材料(如外尔半金属和绝缘体)协同作用,通过不同但互补的机制放大自旋霍尔效应。这些机制包括手性自旋纹理、外尔/狄拉克费米子、能带反转诱导的贝里曲率热点以及受保护的表面或铰链态,所有这些都由强自旋轨道耦合和独特的自旋动量锁定所支配。我们系统地分析了这些材料中对称性、拓扑结构和电子结构之间的相互作用如何为增强自旋霍尔效应创造了前所未有的机会,并得到了计算设计(如贝里曲率工程)和诸如应变、合金化和异质结构等实验策略方面的突破的支持。在材料优化的背景下,讨论了包括自旋轨道耦合扩散长度权衡以及利用磁性或低对称相的必要性等关键挑战。通过统一来自手性和拓扑系统的见解,本综述绘制了一条超越传统自旋电流产生范式并推进可扩展自旋电子技术的路线图。