Suppr超能文献

曼巴注意力增强卷积网络(MambaCAttnGCN+):一种整合曼巴文本卷积神经网络(MambaTextCNN)、交叉注意力和图卷积网络的综合框架,用于piRNA-疾病关联预测。

MambaCAttnGCN+: a comprehensive framework integrating MambaTextCNN, cross-attention and graph convolution network for piRNA-disease association prediction.

作者信息

Yao Dengju, Li Xiangkui, Zhan Xiaojuan, Zhang Bo, Zhang Jian

机构信息

School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, 150080, China.

College of Computer Science and Technology, Heilongjiang Institute of Technology, Harbin, 150050, China.

出版信息

Sci Rep. 2025 Jul 11;15(1):25058. doi: 10.1038/s41598-025-07641-y.

Abstract

Elucidating the interactions between piwi-interacting RNAs (piRNAs) and diseases is crucial for diagnosis and treatment. Although several computational approaches have been developed to investigate piRNA-disease associations, sparse datasets present challenges in capturing the complex relationships between piRNAs and diseases. To develop a more accurate prediction model for associations between piRNAs and diseases. We integrated piRNA sequence information, disease-related semantic terms, and existing piRNA-disease association networks to construct a heterogeneous graph. Utilizing the Mamba module, we developed an innovative sequence embedding model, MambaTextCNN, to extract features from piRNA sequences, which we used as node attributes within the heterogeneous graph. A heterogeneous graph convolution method was then applied to identify potential associations between piRNAs and diseases, with cross-attention mechanisms further enhancing node features. Finally, by incorporating positive unlabeled learning techniques, we developed the piRNA-disease association prediction model MambaCAttnGCN+. In 5-fold cross-validation, MambaCAttnGCN + achieved AUCs of 0.94 and 0.953 on two datasets, outperforming seven other state-of-the-art models. Additionally, a comparison of three distinct approaches for representing sequence node features, revealed through ablation experiments that features extracted by MambaTextCNN were the most effective. MambaCAttnGCN + represents a valuable predictive tool for future research on piRNA-disease associations in biomedicine.

摘要

阐明与Piwi相互作用的RNA(piRNA)与疾病之间的相互作用对于疾病的诊断和治疗至关重要。尽管已经开发了几种计算方法来研究piRNA与疾病的关联,但稀疏数据集在捕捉piRNA与疾病之间的复杂关系方面存在挑战。为了开发一种更准确的piRNA与疾病关联预测模型,我们整合了piRNA序列信息、疾病相关语义术语和现有的piRNA-疾病关联网络来构建一个异构图。利用Mamba模块,我们开发了一种创新的序列嵌入模型MambaTextCNN,从piRNA序列中提取特征,并将其用作异构图中的节点属性。然后应用异构图卷积方法来识别piRNA与疾病之间的潜在关联,交叉注意力机制进一步增强了节点特征。最后,通过纳入正无标签学习技术,我们开发了piRNA-疾病关联预测模型MambaCAttnGCN+。在5折交叉验证中,MambaCAttnGCN+在两个数据集上的AUC分别达到0.94和0.953,优于其他七个最先进的模型。此外,通过消融实验对三种不同的序列节点特征表示方法进行比较,结果表明MambaTextCNN提取的特征最有效。MambaCAttnGCN+是生物医学中未来piRNA-疾病关联研究的一个有价值的预测工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1584/12254271/1342fbd65d2b/41598_2025_7641_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验