Suppr超能文献

基于神经协同过滤的图卷积网络用于预测miRNA-疾病关联

Graph Convolutional Network with Neural Collaborative Filtering for Predicting miRNA-Disease Association.

作者信息

Ha Jihwan

机构信息

Major of Big Data Convergence, Division of Data Information Science, Pukyong National University, Busan 48513, Republic of Korea.

出版信息

Biomedicines. 2025 Jan 8;13(1):136. doi: 10.3390/biomedicines13010136.

Abstract

Over the past few decades, micro ribonucleic acids (miRNAs) have been shown to play significant roles in various biological processes, including disease incidence. Therefore, much effort has been devoted to discovering the pivotal roles of miRNAs in disease incidence to understand the underlying pathogenesis of human diseases. However, identifying miRNA-disease associations using biological experiments is inefficient in terms of cost and time. Here, we discuss a novel machine-learning model that effectively predicts disease-related miRNAs using a graph convolutional neural network with neural collaborative filtering (GCNCF). By applying the graph convolutional neural network, we could effectively capture important miRNAs and disease feature vectors present in the network while preserving the network structure. By exploiting neural collaborative filtering, miRNAs and disease feature vectors were effectively learned through matrix factorization and deep learning, and disease-related miRNAs were identified. Extensive experimental results based on area under the curve (AUC) scores (0.9216 and 0.9018) demonstrated the superiority of our model over previous models. We anticipate that our model could not only serve as an effective tool for predicting disease-related miRNAs but could be employed as a universal computational framework for inferring relationships across biological entities.

摘要

在过去几十年中,微小核糖核酸(miRNAs)已被证明在包括疾病发生在内的各种生物过程中发挥重要作用。因此,人们投入了大量精力来发现miRNAs在疾病发生中的关键作用,以了解人类疾病的潜在发病机制。然而,利用生物学实验来识别miRNA与疾病的关联在成本和时间方面效率低下。在此,我们讨论一种新颖的机器学习模型,该模型使用带有神经协同过滤的图卷积神经网络(GCNCF)有效地预测与疾病相关的miRNAs。通过应用图卷积神经网络,我们能够在保留网络结构的同时,有效地捕捉网络中存在的重要miRNAs和疾病特征向量。通过利用神经协同过滤,通过矩阵分解和深度学习有效地学习了miRNAs和疾病特征向量,并识别出与疾病相关的miRNAs。基于曲线下面积(AUC)分数(0.9216和0.9018)的大量实验结果证明了我们的模型优于先前的模型。我们预计,我们的模型不仅可以作为预测与疾病相关的miRNAs的有效工具,还可以用作推断生物实体之间关系的通用计算框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c27c/11762804/6a01c9b2aa2e/biomedicines-13-00136-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验