Columbia University, Earth and Environmental Engineering Department, New York, NY, 10027, USA.
Sci Data. 2023 Mar 22;10(1):154. doi: 10.1038/s41597-023-02053-x.
The Consistent Artificial Intelligence (AI)-based Soil Moisture (CASM) dataset is a global, consistent, and long-term, remote sensing soil moisture (SM) dataset created using machine learning. It is based on the NASA Soil Moisture Active Passive (SMAP) satellite mission SM data and is aimed at extrapolating SMAP-like quality SM back in time using previous satellite microwave platforms. CASM represents SM in the top soil layer, and it is defined on a global 25 km EASE-2 grid and for 2002-2020 with a 3-day temporal resolution. The seasonal cycle is removed for the neural network training to ensure its skill is targeted at predicting SM extremes. CASM comparison to 367 global in-situ SM monitoring sites shows a SMAP-like median correlation of 0.66. Additionally, the SM product uncertainty was assessed, and both aleatoric and epistemic uncertainties were estimated and included in the dataset. CASM dataset can be used to study a wide range of hydrological, carbon cycle, and energy processes since only a consistent long-term dataset allows assessing changes in water availability and water stress.
一致人工智能(AI)土壤湿度(CASM)数据集是一个全球性的、一致的、长期的、基于机器学习的遥感土壤湿度(SM)数据集。它基于美国宇航局土壤湿度主动被动(SMAP)卫星任务的 SM 数据,旨在使用先前的卫星微波平台将类似 SMAP 质量的 SM 外推回过去的时间。CASM 代表表层土壤中的 SM,它在全球 25km EASE-2 网格上定义,时间分辨率为 2002-2020 年的 3 天。为了确保神经网络训练的技能针对预测 SM 极值,已去除季节性循环。CASM 与 367 个全球原位 SM 监测站点的比较显示,与 SMAP 类似的中位数相关系数为 0.66。此外,还评估了 SM 产品的不确定性,并估计了偶然不确定性和认知不确定性,并将其包含在数据集中。由于只有一致的长期数据集才能评估水可用性和水压力的变化,因此 CASM 数据集可用于研究广泛的水文、碳循环和能量过程。