Feng Zhan, Yang Piao, Wu Yaoyao, Li Zhi, Hu Zhengyu, Lan Wenting
The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Second People's Hospital of Yuhang District, Hangzhou, China.
Abdom Radiol (NY). 2025 Jul 12. doi: 10.1007/s00261-025-05108-2.
To investigate the association between CT radiomics-based tumor heterogeneity and recurrence-free survival (RFS) in high-risk clear cell renal cell carcinoma (ccRCC) after nephrectomy, and to determine whether integrating CT radiomics with clinicopathological model enhances recurrence risk prediction for adjuvant treatment decisions.
This retrospective study included 194 patients with high-risk ccRCC undergoing nephrectomy. A radiomics model based on random survival forest was developed in the training set, using radiomics features extracted from pre-operative corticomedullary phase images. The performance of radiomics, Leibovich score, and the combined model were evaluated using Kaplan-Meier survival analysis, time-dependent receiver operating characteristic curves (time-AUC), time-dependent Brier scores, and decision curve analysis in external test set.
During follow-up, 62 patients experienced recurrence. The radiomics model demonstrated superior predictive performance compared to the Leibovich score, with higher time-dependent AUCs (1-year: 0.882 vs. 0.781; 2-year: 0.865 vs. 0.762; 3-year: 0.793 vs. 0.797; all p < 0.05) and better calibration (lower Brier scores) in the test set. Decision curve analysis demonstrated that the combined model provided the highest net benefit, particularly for 2- to 3-year recurrence risk predictions.
For high-risk ccRCC, CT radiomics provides incremental prognostic value beyond conventional clinicopathological models, enabling more precise recurrence risk stratification. This approach bridges imaging and precision oncology, with potential to optimize surveillance protocols and adjuvant therapy trial design.
探讨基于CT影像组学的肿瘤异质性与高危透明细胞肾细胞癌(ccRCC)肾切除术后无复发生存期(RFS)之间的关联,并确定将CT影像组学与临床病理模型相结合是否能增强辅助治疗决策的复发风险预测能力。
本回顾性研究纳入了194例行肾切除术的高危ccRCC患者。在训练集中,利用术前皮髓质期图像提取的影像组学特征,建立基于随机生存森林的影像组学模型。在外部测试集中,采用Kaplan-Meier生存分析、时间依赖性受试者操作特征曲线(time-AUC)、时间依赖性Brier评分和决策曲线分析,评估影像组学、Leibovich评分及联合模型的性能。
随访期间,62例患者出现复发。影像组学模型在预测性能上优于Leibovich评分,在测试集中具有更高的时间依赖性AUC(1年:0.882对0.781;2年:0.865对0.762;3年:0.793对0.797;均P<0.05)和更好的校准(更低的Brier评分)。决策曲线分析表明,联合模型提供了最高的净效益,尤其是在2至3年复发风险预测方面。
对于高危ccRCC,CT影像组学比传统临床病理模型具有更高的预后价值,能够实现更精确的复发风险分层。这种方法将影像学与精准肿瘤学联系起来,有可能优化监测方案和辅助治疗试验设计。