Suppr超能文献

跨学科医学教育实践:基于公共数据集构建案例驱动的跨学科模拟系统。

Interdisciplinary medical education practices: building a case-driven interdisciplinary simulation system based on public datasets.

作者信息

Qiu Kangli, Zeng Tianshu, Xia Wenfang, Peng Miaomiao, Kong Wen

机构信息

Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China.

出版信息

BMC Med Educ. 2025 Jul 11;25(1):1037. doi: 10.1186/s12909-025-07631-8.

Abstract

BACKGROUND

Recent advancements in medical education underscore the importance of training professionals who are proficient in multiple disciplines. This study aims to develop clinical data analysis cases centered around diseases by utilizing public datasets, and to investigate the establishment of a "medicine + X" simulation practice system within the framework of interdisciplinary disciplines.

METHODS

From a multi-disciplinary perspective, we designed a cross-disciplinary "medicine + X" subject simulation practice system based on three dimensions: data, case, and simulation. This system comprises three parts: dataset classification, dataset modeling, and dataset clinical analysis. The entire interdisciplinary simulation system adheres to the concept of functional modular design and employs a model stratification method to achieve the division of data, analysis, and presentation models. This creates a closed-loop practice that spans data sample selection and processing to front-end interaction. Finally, we used a modified version of the System Usability Scale (SUS) questionnaire to evaluate the interdisciplinary simulation system.

RESULTS

Five cases of gout, gastritis, cirrhosis, inflammatory bowel disease, and chronic obstructive pulmonary disease were utilized to master the standard process of data analysis across various datasets from multiple dimensions of the model algorithm, data analysis, and result display.

CONCLUSION

The "Data-case-simulation" trinity practice teaching model enables students to utilize open-source datasets for case analysis, employing clinical index modeling and statistical thinking. This verifies the efficiency of case simulation analysis within interdisciplinary scenarios and provides a data-driven practice paradigm for medical education innovation. This model holds significant reference value for promoting in-depth cross-disciplinary integration of "medicine + X".

摘要

背景

医学教育的最新进展凸显了培养精通多学科专业人员的重要性。本研究旨在利用公共数据集开发以疾病为中心的临床数据分析案例,并探讨在跨学科框架内建立“医学+X”模拟实践系统。

方法

从多学科角度出发,我们基于数据、案例和模拟三个维度设计了一个跨学科的“医学+X”主题模拟实践系统。该系统包括三个部分:数据集分类、数据集建模和数据集临床分析。整个跨学科模拟系统遵循功能模块化设计理念,采用模型分层方法实现数据、分析和呈现模型的划分。这创建了一个从数据样本选择和处理到前端交互的闭环实践。最后,我们使用系统可用性量表(SUS)问卷的修改版来评估跨学科模拟系统。

结果

利用痛风、胃炎、肝硬化、炎症性肠病和慢性阻塞性肺疾病五个案例,从模型算法、数据分析和结果显示的多个维度掌握了跨数据集的数据分析标准流程。

结论

“数据-案例-模拟”三位一体的实践教学模式使学生能够利用开源数据集进行案例分析,运用临床指标建模和统计思维。这验证了跨学科场景下案例模拟分析的效率,并为医学教育创新提供了数据驱动的实践范式。该模式对推动“医学+X”的深度跨学科融合具有重要参考价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc1a/12255017/d2b9f4f71ebb/12909_2025_7631_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验