Huang Yilan, Liu Honghu
Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA.
Section of Public and Population Health, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA.
Arch Public Health. 2025 Jul 11;83(1):183. doi: 10.1186/s13690-025-01673-6.
Regular dental visits are essential for oral health, yet disparities between regions exist due to socioeconomic and geographic factors. While national surveys provide valuable data on dental care utilization, they generally lack sufficient sample sizes at the local level to generate reliable county-level estimates. Small area estimation techniques, such as multilevel regression and post-stratification (MRP), can help address this gap by producing robust estimates for smaller geographic areas. However, the MRP approach relies on detailed population data in the form of joint distributions and cannot be applied when only marginal distributions are available.
This paper introduces a hybrid approach combining multilevel modeling with the raking procedure. We used individual-level data from the 2018 Behavioral Risk Factor Surveillance System (BRFSS) and census data from American Community Survey to estimate county-level dental care utilization among adults in California.
The county-level dental care utilization in California ranged from 52.5 to 73.1%, with a median of 63.1%. Our model-based estimates matched direct BRFSS estimates at metropolitan and micropolitan statistical area levels. Furthermore, we found significantly positive correlations between our model-based estimates and direct estimates from the California Health Interview Survey for 41 counties (Pearson coefficient: 0.801, P < 0.001).
The proposed approach accounts for individual- and area-level factors while overcoming data constraints that limit the application of MRP. The findings demonstrate the feasibility of this approach in generating county-level estimates, supporting public health planning and targeted interventions to reduce disparities in dental care utilization.
定期看牙医对口腔健康至关重要,但由于社会经济和地理因素,各地区存在差异。虽然全国性调查提供了有关牙科护理利用情况的宝贵数据,但它们通常在地方层面缺乏足够的样本量,无法得出可靠的县级估计值。小区域估计技术,如多层回归和事后分层(MRP),可以通过为较小的地理区域生成稳健的估计值来帮助弥补这一差距。然而,MRP方法依赖于联合分布形式的详细人口数据,当只有边际分布可用时无法应用。
本文介绍了一种将多层建模与加权程序相结合的混合方法。我们使用了2018年行为风险因素监测系统(BRFSS)的个体层面数据和美国社区调查的人口普查数据,以估计加利福尼亚州成年人的县级牙科护理利用率。
加利福尼亚州县级牙科护理利用率在52.5%至73.1%之间,中位数为63.1%。我们基于模型的估计值与大都市和微型都市统计区域层面的BRFSS直接估计值相匹配。此外,我们发现我们基于模型的估计值与加利福尼亚健康访谈调查对41个县的直接估计值之间存在显著的正相关(皮尔逊系数:0.801,P < 0.001)。
所提出的方法考虑了个体和区域层面的因素,同时克服了限制MRP应用的数据约束。研究结果证明了这种方法在生成县级估计值方面的可行性,支持公共卫生规划和有针对性的干预措施,以减少牙科护理利用方面的差异。