Turki Anas, Alshabrawy Ossama, Woo Wai Lok
Department of Computer and Information Science, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
Cancers (Basel). 2025 Jun 24;17(13):2115. doi: 10.3390/cancers17132115.
Head and neck squamous cell carcinoma (HNSCC) is a prevalent and aggressive cancer, and accurate staging using the AJCC system is essential for treatment planning. This study aims to enhance AJCC staging by integrating both clinical and imaging data using a multimodal deep learning pipeline. We propose a framework that employs a VGG16-based masked autoencoder (MAE) for self-supervised visual feature learning, enhanced by attention mechanisms (CBAM and BAM), and fuses image and clinical features using an attention-weighted fusion network. The models, benchmarked on the HNSCC and HN1 datasets, achieved approximately 80% accuracy (four classes) and ~66% accuracy (five classes), with notable AUC improvements, especially under BAM. The integration of clinical features significantly enhances stage-classification performance, setting a precedent for robust multimodal pipelines in radiomics-based oncology applications.
头颈部鳞状细胞癌(HNSCC)是一种常见且侵袭性强的癌症,使用美国癌症联合委员会(AJCC)系统进行准确分期对于治疗规划至关重要。本研究旨在通过使用多模态深度学习管道整合临床和影像数据来改进AJCC分期。我们提出了一个框架,该框架采用基于VGG16的掩码自动编码器(MAE)进行自监督视觉特征学习,并通过注意力机制(CBAM和BAM)进行增强,同时使用注意力加权融合网络融合图像和临床特征。在HNSCC和HN1数据集上进行基准测试的模型,实现了约80%的准确率(四类)和约66%的准确率(五类),曲线下面积(AUC)有显著提高,尤其是在BAM下。临床特征的整合显著提高了分期分类性能,为基于放射组学的肿瘤学应用中强大的多模态管道树立了先例。
Int J Med Inform. 2025-7
J Natl Compr Canc Netw. 2025-2
Brief Bioinform. 2024-11-22
Cancers (Basel). 2024-2-29