Suppr超能文献

整合下一代测序数据以指导脊柱转移瘤患者的生存预测。

Integration of Next Generation Sequencing Data to Inform Survival Prediction of Patients with Spine Metastasis.

作者信息

Giantini-Larsen Alexandra, Ramos Alexander D, Martin Axel, Panageas Katherine S, Kostrzewa Caroline E, Abou-Mrad Zaki, Schmitt Adam, Bromberg Jacqueline F, Safonov Anton, Rudin Charles M, Newman William Christopher, Bilsky Mark H, Barzilai Ori

机构信息

Department of Neurological Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.

Department of Neurological Surgery, New York Presbyterian Hospital, Weill Cornell Medical Center, New York, NY 10065, USA.

出版信息

Cancers (Basel). 2025 Jul 2;17(13):2218. doi: 10.3390/cancers17132218.

Abstract

: Spinal metastatic disease is a life-altering problem for individuals with cancer. Prognostication is key for tailored treatment of spinal metastases. This manuscript provides a comprehensive overview of the genomic profiles of metastatic spine tumors and investigates the potential of mutational data to stratify overall survival (OS) across various histologies. : This is a cohort study of consecutive patients with spine metastatic disease whose tumors were sequenced on a next generation sequencing platform; a machine learning (ML) algorithm was used to stratify OS risk. : Targeted sequencing and stratification of OS risk of 282 spine metastases (breast (84), non-small cell lung (56), prostate (49), other (93)) was performed. (HR 1.80; 95% CI 1.26, 2.56) and (HR 3.95, 95% CI 2.24, 6.98) mutations were associated with poor survival across the entire cohort in univariate Cox proportional hazards models. The ML algorithm categorized breast cancer metastasis into low- and high-risk groups, revealing a median OS of 71 compared to 22 months (HR 3.3, < 0.001). mutations and mutations conferred poor prognosis. In lung cancer, low- and high-risk groups with median OS of 30 and 6 months (HR 8.3, < 0.001), respectively, were identified with poor prognosis linked to amplification. No significant prognostic associations were identified for spinal prostate metastases. : Metastatic spine tumor molecular data allows for the identification of prognostic groups. We present an open-source machine learning algorithm utilizing genomic mutational data that may aid in prognostication and tailored decision making.

摘要

脊柱转移性疾病对于癌症患者来说是一个改变生活的问题。预后评估是脊柱转移瘤个体化治疗的关键。本文全面概述了转移性脊柱肿瘤的基因组概况,并研究了突变数据对不同组织学类型患者总生存期(OS)进行分层的潜力。 这是一项对连续性脊柱转移性疾病患者的队列研究,这些患者的肿瘤在下一代测序平台上进行了测序;使用机器学习(ML)算法对OS风险进行分层。 对282例脊柱转移瘤(乳腺癌84例、非小细胞肺癌56例、前列腺癌49例、其他93例)进行了OS风险的靶向测序和分层。在单变量Cox比例风险模型中, (风险比1.80;95%置信区间1.26,2.56)和 (风险比3.95,95%置信区间2.24,6.98)突变与整个队列的不良生存相关。ML算法将乳腺癌转移分为低风险和高风险组,低风险组的中位OS为71个月,高风险组为22个月(风险比3.3,P<0.001)。 突变和 突变提示预后不良。在肺癌中,低风险组和高风险组的中位OS分别为30个月和6个月(风险比8.3,P<0.001),预后不良与 扩增有关。未发现脊柱前列腺转移有显著的预后相关性。 转移性脊柱肿瘤分子数据有助于识别预后组。我们提出了一种利用基因组突变数据的开源机器学习算法,该算法可能有助于预后评估和个体化决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24a4/12249426/1eb8e5802962/cancers-17-02218-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验