Memorial Sloan Kettering Cancer Center, New York, New York.
Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
JAMA Oncol. 2022 Feb 1;8(2):287-291. doi: 10.1001/jamaoncol.2021.5153.
Real-world data sets that combine clinical and genomic data may be subject to left truncation (when potential study participants are not included because they have already passed the milestone of interest at the time of study recruitment). The lapse between diagnosis and molecular testing can present analytic challenges and threaten the validity and interpretation of survival analyses.
Effects of ignoring left truncation when estimating overall survival are illustrated using data from the American Association for Cancer Research (AACR) Project Genomics Evidence Neoplasia Information Exchange Biopharma Collaborative (GENIE BPC), and a straightforward risk-set adjustment approach is described. Ignoring left truncation results in overestimation of overall survival: unadjusted median survival estimates from diagnosis among patients with stage IV non-small cell lung cancer or stage IV colorectal cancer were overestimated by more than 1 year.
Clinicogenomic data are a valuable resource for evaluation of real-world cancer outcomes and should be analyzed using appropriate methods to maximize their potential. Analysts must become adept at application of appropriate statistical methods to ensure valid, meaningful, and generalizable research findings.
将临床和基因组数据结合起来的真实世界数据集可能会受到左截断的影响(当潜在的研究参与者由于在研究招募时已经过了感兴趣的里程碑而未被包括在内时)。从诊断到分子检测之间的时间间隔可能会带来分析挑战,并威胁到生存分析的有效性和解释。
使用美国癌症研究协会(AACR)项目基因组学证据肿瘤信息交流生物制药合作组织(GENIE BPC)的数据说明了在估计总体生存率时忽略左截断的影响,并描述了一种简单的风险集调整方法。忽略左截断会导致总体生存率的高估:在 IV 期非小细胞肺癌或 IV 期结直肠癌患者中,从诊断开始的未经调整的中位生存估计值被高估了 1 年以上。
临床基因组数据是评估真实世界癌症结果的宝贵资源,应使用适当的方法进行分析,以最大限度地发挥其潜力。分析人员必须熟练应用适当的统计方法,以确保研究结果有效、有意义且可推广。