Zheng Yuanning, Sadée Christoph, Ozawa Michael, Howitt Brooke E, Gevaert Olivier
Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA.
Department of Pathology, Stanford University, Stanford, CA 94305, USA.
Sci Adv. 2025 May 23;11(21):eadu2151. doi: 10.1126/sciadv.adu2151.
Non-small cell lung cancer (NSCLC) constitutes over 80% of lung cancer cases and remains a leading cause of cancer-related mortality worldwide. Despite the advent of immune checkpoint inhibitors, their efficacy is limited to 27 to 45% of patients. Identifying likely treatment responders is essential for optimizing healthcare and improving quality of life. We generated multiplex immunofluorescence (mIF) images, histopathology, and RNA sequencing data from human NSCLC tissues. Through the analysis of mIF images, we characterized the spatial organization of 1.5 million cells based on the expression levels for 33 biomarkers. To enable large-scale characterization of tumor microenvironments, we developed NucSegAI, a deep learning model for automated nuclear segmentation and cellular classification in histology images. With this model, we analyzed the morphological, textural, and topological phenotypes of 45.6 million cells across 119 whole-slide images. Through unsupervised phenotype discovery, we identified specific lymphocyte phenotypes predictive of immunotherapy response. Our findings can improve patient stratification and guide selection of effective therapeutic regimens.
非小细胞肺癌(NSCLC)占肺癌病例的80%以上,仍是全球癌症相关死亡的主要原因。尽管免疫检查点抑制剂已经问世,但其疗效仅限于27%至45%的患者。识别可能的治疗反应者对于优化医疗保健和提高生活质量至关重要。我们从人类NSCLC组织中生成了多重免疫荧光(mIF)图像、组织病理学和RNA测序数据。通过对mIF图像的分析,我们根据33种生物标志物的表达水平对150万个细胞的空间组织进行了表征。为了实现对肿瘤微环境的大规模表征,我们开发了NucSegAI,这是一种用于组织学图像中自动核分割和细胞分类的深度学习模型。利用该模型,我们分析了119张全切片图像中4560万个细胞的形态、纹理和拓扑表型。通过无监督表型发现,我们确定了预测免疫治疗反应的特定淋巴细胞表型。我们的研究结果可以改善患者分层,并指导有效治疗方案的选择。