Suppr超能文献

基于迁移学习的数字乳腺断层合成深度学习:一种基于影像组学的乳腺癌风险预测模型。

Deep Learning with Transfer Learning on Digital Breast Tomosynthesis: A Radiomics-Based Model for Predicting Breast Cancer Risk.

作者信息

Galati Francesca, Maroncelli Roberto, De Nardo Chiara, Testa Lucia, Barcaroli Gloria, Rizzo Veronica, Moffa Giuliana, Pediconi Federica

机构信息

Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.

Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy.

出版信息

Diagnostics (Basel). 2025 Jun 26;15(13):1631. doi: 10.3390/diagnostics15131631.

Abstract

: Digital breast tomosynthesis (DBT) is a valuable imaging modality for breast cancer detection; however, its interpretation remains time-consuming and subject to inter-reader variability. This study aimed to develop and evaluate two deep learning (DL) models based on transfer learning for the binary classification of breast lesions (benign vs. malignant) using DBT images to support clinical decision-making and risk stratification. : In this retrospective monocentric study, 184 patients with histologically or clinically confirmed benign (107 cases, 41.8%) or malignant (77 cases, 58.2%) breast lesions were included. Each case underwent DBT with a single lesion manually segmented for radiomic analysis. Two convolutional neural network (CNN) architectures-ResNet50 and DenseNet201-were trained using transfer learning from ImageNet weights. A 10-fold cross-validation strategy with ensemble voting was applied. Model performance was evaluated through ROC-AUC, accuracy, sensitivity, specificity, PPV, and NPV. : The ResNet50 model outperformed DenseNet201 across most metrics. On the internal testing set, ResNet50 achieved a ROC-AUC of 63%, accuracy of 60%, sensitivity of 39%, and specificity of 75%. The DenseNet201 model yielded a lower ROC-AUC of 55%, accuracy of 55%, and sensitivity of 24%. Both models demonstrated relatively high specificity, indicating potential utility in ruling out malignancy, though sensitivity remained suboptimal. : This study demonstrates the feasibility of using transfer learning-based DL models for lesion classification on DBT. While the overall performance was moderate, the results highlight both the potential and current limitations of AI in breast imaging. Further studies and approaches are warranted to enhance model robustness and clinical applicability.

摘要

数字乳腺断层合成(DBT)是一种用于乳腺癌检测的有价值的成像方式;然而,其解读仍然耗时且存在读者间的差异。本研究旨在开发和评估基于迁移学习的两种深度学习(DL)模型,用于使用DBT图像对乳腺病变进行二元分类(良性与恶性),以支持临床决策和风险分层。

在这项回顾性单中心研究中,纳入了184例经组织学或临床证实为良性(107例,41.8%)或恶性(77例,58.2%)乳腺病变的患者。每例患者均接受了DBT检查,对单个病变进行手动分割以进行放射组学分析。使用来自ImageNet权重的迁移学习对两种卷积神经网络(CNN)架构——ResNet50和DenseNet201——进行训练。应用了带有集成投票的10折交叉验证策略。通过ROC-AUC、准确性、敏感性、特异性、阳性预测值和阴性预测值评估模型性能。

ResNet50模型在大多数指标上优于DenseNet201。在内部测试集上,ResNet50的ROC-AUC为63%,准确性为60%,敏感性为39%,特异性为75%。DenseNet201模型的ROC-AUC较低,为55%,准确性为55%,敏感性为24%。两种模型均显示出相对较高的特异性,表明在排除恶性肿瘤方面具有潜在效用,尽管敏感性仍不理想。

本研究证明了使用基于迁移学习的DL模型对DBT上的病变进行分类的可行性。虽然总体性能中等,但结果突出了人工智能在乳腺成像中的潜力和当前局限性。有必要进行进一步的研究和采用其他方法来提高模型的稳健性和临床适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17cb/12249188/dee9cd685c4d/diagnostics-15-01631-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验