Suppr超能文献

基于数字乳腺断层合成技术的乳腺癌检测与分类:一种两阶段深度学习方法。

Breast cancer detection and classification with digital breast tomosynthesis: a two-stage deep learning approach.

作者信息

Alashban Yazeed

机构信息

King Saud University, College of Applied Medical Sciences, Department of Radiological Sciences, Riyadh, Saudi Arabia.

出版信息

Diagn Interv Radiol. 2025 Apr 28;31(3):206-214. doi: 10.4274/dir.2024.242923. Epub 2024 Dec 9.

Abstract

PURPOSE

The purpose of this study was to propose a new computer-assisted two-staged diagnosis system that combines a modified deep learning (DL) architecture (VGG19) for the classification of digital breast tomosynthesis (DBT) images with the detection of tumors as benign or cancerous using the You Only Look Once version 5 (YOLOv5) model combined with the convolutional block attention module (CBAM) (known as YOLOv5-CBAM).

METHODS

In the modified version of VGG19, eight additional layers were integrated, comprising four batch normalization layers and four additional pooling layers (two max pooling and two average pooling). The CBAM was incorporated into the YOLOv5 model structure after each feature fusion. The experiment was carried out using a sizable benchmark dataset of breast tomography images. A total of 22,032 DBT examinations from 5,060 patients were included in the data.

RESULTS

Test accuracy, training loss, and training accuracy showed better performance with our proposed architecture than with previous models. Hence, the modified VGG19 classified DBT images more accurately than previously possible using pre-trained model-based architectures. Furthermore, a YOLOv5-based CBAM precisely discriminated between benign lesions and those that were malignant.

CONCLUSION

DBT images can be classified using modified VGG19 with accuracy greater than the previously available pre-trained models-based architectures. Furthermore, a YOLOv5-based CBAM can precisely distinguish between benign and cancerous lesions.

CLINICAL SIGNIFICANCE

The proposed two-tier DL algorithm, combining a modified VGG19 model for image classification and YOLOv5-CBAM for lesion detection, can improve the accuracy, efficiency, and reliability of breast cancer screening and diagnosis through innovative artificial intelligence-driven methodologies.

摘要

目的

本研究的目的是提出一种新的计算机辅助两阶段诊断系统,该系统结合了一种改进的深度学习(DL)架构(VGG19)用于数字乳腺断层合成(DBT)图像分类,并使用结合了卷积块注意力模块(CBAM)的You Only Look Once版本5(YOLOv5)模型(称为YOLOv5-CBAM)来检测肿瘤是良性还是恶性。

方法

在VGG19的改进版本中,集成了八个额外的层,包括四个批量归一化层和四个额外的池化层(两个最大池化和两个平均池化)。在每次特征融合后,将CBAM纳入YOLOv5模型结构。使用一个规模较大的乳腺断层图像基准数据集进行实验。数据中包括来自5060名患者的总共22032次DBT检查。

结果

与先前的模型相比,我们提出的架构在测试准确率、训练损失和训练准确率方面表现更好。因此,改进后的VGG19比以前基于预训练模型的架构更准确地对DBT图像进行分类。此外,基于YOLOv5的CBAM能够精确地区分良性病变和恶性病变。

结论

使用改进的VGG19可以对DBT图像进行分类,其准确率高于以前基于预训练模型的架构。此外,基于YOLOv5的CBAM可以精确区分良性和癌性病变。

临床意义

所提出的两层深度学习算法,结合用于图像分类的改进VGG19模型和用于病变检测的YOLOv5-CBAM,可以通过创新的人工智能驱动方法提高乳腺癌筛查和诊断的准确性、效率和可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e25/12057522/5b33fb530c71/DiagnIntervRadiol-31-3-206-figure-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验