Huang Chien-Wei, Su Chang-Chao, Chou Chu-Kuang, Mukundan Arvind, Karmakar Riya, Chen Tsung-Hsien, Shukla Pranav, Gupta Devansh, Wang Hsiang-Chen
Department of Gastroenterology, Kaohsiung Armed Forces General Hospital, 2, Zhongzheng 1st Rd., Lingya District, Kaohsiung 80284, Taiwan.
Department of Nursing, Tajen University, 20, Weixin Rd., Yanpu Township, Pingtung County 90741, Taiwan.
Diagnostics (Basel). 2025 Jun 30;15(13):1664. doi: 10.3390/diagnostics15131664.
Gastrointestinal diseases (GID), such as oesophagitis, polyps, and ulcerative colitis, contribute significantly to global morbidity and mortality. Conventional diagnostic methods employing white light imaging (WLI) in wireless capsule endoscopy (WCE) provide limited spectrum information, therefore influencing classification performance. A new technique called Spectrum Aided Vision Enhancer (SAVE), which converts traditional WLI images into hyperspectral imaging (HSI)-like representations, hence improving diagnostic accuracy. HSI involves the acquisition of image data across numerous wavelengths of light, extending beyond the visible spectrum, to deliver comprehensive information regarding the material composition and attributes of the imaged objects. This technique facilitates improved tissue characterisation, rendering it especially effective for identifying abnormalities in medical imaging. Using a carefully selected dataset consisting of 6000 annotated photos taken from the KVASIR and ETIS-Larib Polyp Database, this work classifies normal, ulcers, polyps, and oesophagitis. The performance of both the original WLI and SAVE transformed images was assessed using advanced deep learning architectures. The principal outcome was the overall classification accuracy for normal, ulcer, polyp, and oesophagitis categories, contrasting SAVE-enhanced images with standard WLI across five deep learning models. The principal outcome of this study was the enhancement of diagnostic accuracy for gastrointestinal disease classification, assessed through classification accuracy, precision, recall, and F1 score. The findings illustrate the efficacy of the SAVE method in improving diagnostic performance without requiring specialised equipment. With the best accuracy of 98% attained using EfficientNetB7, compared to 97% with WLI, experimental data show that SAVE greatly increases classification metrics across all models. With relative improvement from 85% (WLI) to 92% (SAVE), VGG16 showed the highest accuracy. These results confirm that the SAVE algorithm significantly improves the early identification and classification of GID, therefore providing a potential development towards more accurate, non-invasive GID diagnostics with WCE.
胃肠道疾病(GID),如食管炎、息肉和溃疡性结肠炎,在全球发病率和死亡率中占很大比例。无线胶囊内镜检查(WCE)中采用白光成像(WLI)的传统诊断方法提供的光谱信息有限,因此影响分类性能。一种名为光谱辅助视觉增强器(SAVE)的新技术,它将传统的WLI图像转换为类似高光谱成像(HSI)的表示形式,从而提高诊断准确性。HSI涉及在多个光波长上采集图像数据,超出可见光谱范围,以提供有关成像对象的材料成分和属性的全面信息。该技术有助于改善组织特征描述,使其在医学成像中识别异常方面特别有效。使用从KVASIR和ETIS-Larib息肉数据库中精心挑选的包含6000张带注释照片的数据集,这项工作对正常、溃疡、息肉和食管炎进行分类。使用先进的深度学习架构评估原始WLI图像和SAVE变换图像的性能。主要结果是正常类(normal)、溃疡类(ulcer)、息肉类(polyp)和食管炎类(oesophagitis)的总体分类准确率,将SAVE增强图像与五个深度学习模型中的标准WLI进行对比。本研究的主要结果是通过分类准确率、精确率、召回率和F1分数评估,提高了胃肠道疾病分类的诊断准确性。研究结果表明,SAVE方法在无需专用设备的情况下提高诊断性能方面是有效的。使用EfficientNetB7达到了98%的最佳准确率,而WLI为97%,实验数据表明SAVE在所有模型中都大大提高了分类指标。VGG16从85%(WLI)到92%(SAVE)有相对提高,显示出最高准确率。这些结果证实,SAVE算法显著改善了胃肠道疾病的早期识别和分类,因此为利用WCE实现更准确、无创的胃肠道疾病诊断提供了潜在的发展方向。
Cancers (Basel). 2025-6-19
Diagnostics (Basel). 2025-6-12
Cochrane Database Syst Rev. 2024-10-17
World J Gastroenterol. 2025-6-7
Int Ophthalmol. 2025-6-27
PeerJ Comput Sci. 2025-5-28
Neural Netw. 2023-10
Nat Rev Dis Primers. 2023-4-20
Cancer Discov. 2023-3-1
Best Pract Res Clin Gastroenterol. 2022