Suppr超能文献

深度学习增强的1.5T乳腺MRI T1加权成像

Deep Learning-Enhanced T1-Weighted Imaging for Breast MRI at 1.5T.

作者信息

Olthof Susann-Cathrin, Nickel Marcel Dominik, Weiland Elisabeth, Leyhr Daniel, Afat Saif, Nikolaou Konstantin, Preibsch Heike

机构信息

Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, 72076 Tuebingen, Germany.

Research & Clinical Translation, Magnetic Resonance, Siemens Healthineers AG, 91052 Erlangen, Germany.

出版信息

Diagnostics (Basel). 2025 Jul 1;15(13):1681. doi: 10.3390/diagnostics15131681.

Abstract

: Assessment of a novel deep-learning (DL)-based T1w volumetric interpolated breath-hold (VIBE) sequence in breast MRI in comparison with standard VIBE (VIBE) for image quality evaluation. : Prospective study of 52 breast cancer patients examined at 1.5T breast MRI with T1w VIBE and T1 VIBE sequence. T1w VIBE was integrated as an additional early non-contrast and a delayed post-contrast scan. Two radiologists independently scored T1w VIBE sequences both pre- and post-contrast and their calculated subtractions (SUBs) for image quality, sharpness, (motion)-artifacts, perceived signal-to-noise and diagnostic confidence with a Likert-scale from 1: Non-diagnostic to 5: Excellent. Lesion diameter was evaluated on the SUB for T1w VIBE/. All lesions were visually evaluated in T1w VIBE/ pre- and post-contrast and their subtractions. Statistics included correlation analyses and paired t-tests. : Significantly higher Likert scale values were detected in the pre-contrast T1w VIBE compared to the T1w VIBE for image quality (each < 0.001), image sharpness ( < 0.001), SNR ( < 0.001), and diagnostic confidence ( < 0.010). Significantly higher values for image quality ( < 0.001 in each case), image sharpness ( < 0.001), SNR ( < 0.001), and artifacts ( < 0.001) were detected in the post-contrast T1w VIBE and in the SUB. SUB provided superior diagnostic certainty compared to SUB in one reader ( = 0.083 or = 0.004). : Deep learning-enhanced T1w VIBE at 1.5T breast MRI offers superior image quality compared to T1w VIBE.

摘要

在乳腺MRI中,评估基于深度学习(DL)的新型T1加权容积内插屏气(VIBE)序列与标准VIBE序列相比的图像质量。:对52例乳腺癌患者进行前瞻性研究,在1.5T乳腺MRI上采用T1加权VIBE序列和T1 VIBE序列进行检查。T1加权VIBE序列作为额外的早期非增强和延迟增强扫描。两名放射科医生独立对T1加权VIBE序列在增强前和增强后的图像质量、清晰度、(运动)伪影、感知信噪比和诊断信心进行评分,采用李克特量表,从1:非诊断到5:优秀。在T1加权VIBE序列的减影图像上评估病变直径。所有病变在T1加权VIBE序列增强前和增强后的图像及其减影图像上进行视觉评估。统计分析包括相关性分析和配对t检验。:与T-weighted VIBE序列相比,在增强前的T1加权VIBE序列中,图像质量(均P<0.001)、图像清晰度(P<0.001)、信噪比(P<0.001)和诊断信心(P<0.010)的李克特量表值显著更高。在增强后的T1加权VIBE序列和减影图像中,图像质量(每种情况P<0.001)、图像清晰度(P<0.001)、信噪比(P<0.001)和伪影(P<0.001)的值显著更高。在一名读者中,减影图像提供了比另一种减影图像更高的诊断确定性(P=0.083或P=0.004)。:在1.5T乳腺MRI中,深度学习增强的T1加权VIBE序列与T1加权VIBE序列相比具有更高的图像质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe1/12248570/0e4465d0fc23/diagnostics-15-01681-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验