文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习增强的1.5T乳腺MRI T1加权成像

Deep Learning-Enhanced T1-Weighted Imaging for Breast MRI at 1.5T.

作者信息

Olthof Susann-Cathrin, Nickel Marcel Dominik, Weiland Elisabeth, Leyhr Daniel, Afat Saif, Nikolaou Konstantin, Preibsch Heike

机构信息

Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, 72076 Tuebingen, Germany.

Research & Clinical Translation, Magnetic Resonance, Siemens Healthineers AG, 91052 Erlangen, Germany.

出版信息

Diagnostics (Basel). 2025 Jul 1;15(13):1681. doi: 10.3390/diagnostics15131681.


DOI:10.3390/diagnostics15131681
PMID:40647680
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12248570/
Abstract

: Assessment of a novel deep-learning (DL)-based T1w volumetric interpolated breath-hold (VIBE) sequence in breast MRI in comparison with standard VIBE (VIBE) for image quality evaluation. : Prospective study of 52 breast cancer patients examined at 1.5T breast MRI with T1w VIBE and T1 VIBE sequence. T1w VIBE was integrated as an additional early non-contrast and a delayed post-contrast scan. Two radiologists independently scored T1w VIBE sequences both pre- and post-contrast and their calculated subtractions (SUBs) for image quality, sharpness, (motion)-artifacts, perceived signal-to-noise and diagnostic confidence with a Likert-scale from 1: Non-diagnostic to 5: Excellent. Lesion diameter was evaluated on the SUB for T1w VIBE/. All lesions were visually evaluated in T1w VIBE/ pre- and post-contrast and their subtractions. Statistics included correlation analyses and paired t-tests. : Significantly higher Likert scale values were detected in the pre-contrast T1w VIBE compared to the T1w VIBE for image quality (each < 0.001), image sharpness ( < 0.001), SNR ( < 0.001), and diagnostic confidence ( < 0.010). Significantly higher values for image quality ( < 0.001 in each case), image sharpness ( < 0.001), SNR ( < 0.001), and artifacts ( < 0.001) were detected in the post-contrast T1w VIBE and in the SUB. SUB provided superior diagnostic certainty compared to SUB in one reader ( = 0.083 or = 0.004). : Deep learning-enhanced T1w VIBE at 1.5T breast MRI offers superior image quality compared to T1w VIBE.

摘要

在乳腺MRI中,评估基于深度学习(DL)的新型T1加权容积内插屏气(VIBE)序列与标准VIBE序列相比的图像质量。:对52例乳腺癌患者进行前瞻性研究,在1.5T乳腺MRI上采用T1加权VIBE序列和T1 VIBE序列进行检查。T1加权VIBE序列作为额外的早期非增强和延迟增强扫描。两名放射科医生独立对T1加权VIBE序列在增强前和增强后的图像质量、清晰度、(运动)伪影、感知信噪比和诊断信心进行评分,采用李克特量表,从1:非诊断到5:优秀。在T1加权VIBE序列的减影图像上评估病变直径。所有病变在T1加权VIBE序列增强前和增强后的图像及其减影图像上进行视觉评估。统计分析包括相关性分析和配对t检验。:与T-weighted VIBE序列相比,在增强前的T1加权VIBE序列中,图像质量(均P<0.001)、图像清晰度(P<0.001)、信噪比(P<0.001)和诊断信心(P<0.010)的李克特量表值显著更高。在增强后的T1加权VIBE序列和减影图像中,图像质量(每种情况P<0.001)、图像清晰度(P<0.001)、信噪比(P<0.001)和伪影(P<0.001)的值显著更高。在一名读者中,减影图像提供了比另一种减影图像更高的诊断确定性(P=0.083或P=0.004)。:在1.5T乳腺MRI中,深度学习增强的T1加权VIBE序列与T1加权VIBE序列相比具有更高的图像质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe1/12248570/4992b0ad6e0b/diagnostics-15-01681-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe1/12248570/0e4465d0fc23/diagnostics-15-01681-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe1/12248570/578301944235/diagnostics-15-01681-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe1/12248570/749753f25b63/diagnostics-15-01681-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe1/12248570/4992b0ad6e0b/diagnostics-15-01681-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe1/12248570/0e4465d0fc23/diagnostics-15-01681-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe1/12248570/578301944235/diagnostics-15-01681-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe1/12248570/749753f25b63/diagnostics-15-01681-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe1/12248570/4992b0ad6e0b/diagnostics-15-01681-g004.jpg

相似文献

[1]
Deep Learning-Enhanced T1-Weighted Imaging for Breast MRI at 1.5T.

Diagnostics (Basel). 2025-7-1

[2]
Evaluation of deep learning reconstruction in accelerated knee MRI: comparison of visual and diagnostic performance metrics.

Radiologie (Heidelb). 2025-6-23

[3]
MRI sequence focused on pancreatic morphology evaluation: three-shot turbo spin-echo with deep learning-based reconstruction.

Acta Radiol. 2025-7-10

[4]
DANTE-CAIPI Accelerated Contrast-Enhanced 3D T1: Deep Learning-Based Image Quality Improvement for Vessel Wall MRI.

AJNR Am J Neuroradiol. 2025-1-8

[5]
Enhancing Lesion Detection in Inflammatory Myelopathies: A Deep Learning-Reconstructed Double Inversion Recovery MRI Approach.

AJNR Am J Neuroradiol. 2025-6-3

[6]
Diagnostic Confidence of Contrast-Enhanced T1-Weighted MRI for the Detection of Brain Metastases: 3D FSE versus 3D GRE-Based Sequences.

AJNR Am J Neuroradiol. 2025-6-3

[7]
Preoperative MRI-based deep learning reconstruction and classification model for assessing rectal cancer.

BMC Med Imaging. 2025-7-1

[8]
Dual-type deep learning-based image reconstruction for advanced denoising and super-resolution processing in head and neck T2-weighted imaging.

Jpn J Radiol. 2025-3-5

[9]
Guaiac-based faecal occult blood tests versus faecal immunochemical tests for colorectal cancer screening in average-risk individuals.

Cochrane Database Syst Rev. 2022-6-6

[10]
Deep Learning Reconstruction Combined With Conventional Acceleration Improves Image Quality of 3 T Brain MRI and Does Not Impact Quantitative Diffusion Metrics.

Invest Radiol. 2025-8-1

本文引用的文献

[1]
Accelerated High-resolution T1- and T2-weighted Breast MRI with Deep Learning Super-resolution Reconstruction.

Acad Radiol. 2025-6

[2]
Deep learning applications in breast cancer histopathological imaging: diagnosis, treatment, and prognosis.

Breast Cancer Res. 2024-9-20

[3]
Prospective Deployment of Deep Learning Reconstruction Facilitates Highly Accelerated Upper Abdominal MRI.

Acad Radiol. 2024-12

[4]
Enhancing gadoxetic acid-enhanced liver MRI: a synergistic approach with deep learning CAIPIRINHA-VIBE and optimized fat suppression techniques.

Eur Radiol. 2024-10

[5]
Automated Computer-Assisted Medical Decision-Making System Based on Morphological Shape and Skin Thickness Analysis for Asymmetry Detection in Mammographic Images.

Diagnostics (Basel). 2023-11-14

[6]
Deep learning enabled fast 3D brain MRI at 0.055 tesla.

Sci Adv. 2023-9-22

[7]
Novel deep-learning-based diffusion weighted imaging sequence in 1.5 T breast MRI.

Eur J Radiol. 2023-9

[8]
Machine learning and deep learning techniques for breast cancer diagnosis and classification: a comprehensive review of medical imaging studies.

J Cancer Res Clin Oncol. 2023-9

[9]
Clinical Impact of Deep Learning Reconstruction in MRI.

Radiographics. 2023-6

[10]
Thin-Slice Prostate MRI Enabled by Deep Learning Image Reconstruction.

Cancers (Basel). 2023-1-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索