文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习在乳腺癌组织病理学成像中的应用:诊断、治疗和预后。

Deep learning applications in breast cancer histopathological imaging: diagnosis, treatment, and prognosis.

机构信息

Department of Hematology and Oncology, Beilun District People's Hospital, Ningbo, 315800, China.

Department of Hematology and Oncology, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, 315800, China.

出版信息

Breast Cancer Res. 2024 Sep 20;26(1):137. doi: 10.1186/s13058-024-01895-6.


DOI:10.1186/s13058-024-01895-6
PMID:39304962
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11416021/
Abstract

Breast cancer is the most common malignant tumor among women worldwide and remains one of the leading causes of death among women. Its incidence and mortality rates are continuously rising. In recent years, with the rapid advancement of deep learning (DL) technology, DL has demonstrated significant potential in breast cancer diagnosis, prognosis evaluation, and treatment response prediction. This paper reviews relevant research progress and applies DL models to image enhancement, segmentation, and classification based on large-scale datasets from TCGA and multiple centers. We employed foundational models such as ResNet50, Transformer, and Hover-net to investigate the performance of DL models in breast cancer diagnosis, treatment, and prognosis prediction. The results indicate that DL techniques have significantly improved diagnostic accuracy and efficiency, particularly in predicting breast cancer metastasis and clinical prognosis. Furthermore, the study emphasizes the crucial role of robust databases in developing highly generalizable models. Future research will focus on addressing challenges related to data management, model interpretability, and regulatory compliance, ultimately aiming to provide more precise clinical treatment and prognostic evaluation programs for breast cancer patients.

摘要

乳腺癌是全球女性中最常见的恶性肿瘤,仍然是女性死亡的主要原因之一。其发病率和死亡率持续上升。近年来,随着深度学习(DL)技术的快速发展,DL 在乳腺癌诊断、预后评估和治疗反应预测方面显示出了巨大的潜力。本文综述了相关研究进展,并应用 DL 模型对 TCGA 和多个中心的大型数据集进行图像增强、分割和分类。我们使用了 ResNet50、Transformer 和 Hover-net 等基础模型,研究了 DL 模型在乳腺癌诊断、治疗和预后预测中的性能。结果表明,DL 技术显著提高了诊断的准确性和效率,特别是在预测乳腺癌转移和临床预后方面。此外,该研究强调了稳健数据库在开发高度通用模型中的关键作用。未来的研究将集中解决与数据管理、模型可解释性和法规遵从性相关的挑战,最终旨在为乳腺癌患者提供更精确的临床治疗和预后评估方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90df/11416021/d87b3cb451d5/13058_2024_1895_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90df/11416021/c34e8ee52796/13058_2024_1895_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90df/11416021/d87b3cb451d5/13058_2024_1895_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90df/11416021/c34e8ee52796/13058_2024_1895_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90df/11416021/d87b3cb451d5/13058_2024_1895_Fig2_HTML.jpg

相似文献

[1]
Deep learning applications in breast cancer histopathological imaging: diagnosis, treatment, and prognosis.

Breast Cancer Res. 2024-9-20

[2]
Deep computational pathology in breast cancer.

Semin Cancer Biol. 2021-7

[3]
Deep learning approaches for breast cancer detection in histopathology images: A review.

Cancer Biomark. 2024

[4]
Lymph Node Metastasis Prediction from Primary Breast Cancer US Images Using Deep Learning.

Radiology. 2019-11-19

[5]
Recent advancements in artificial intelligence for breast cancer: Image augmentation, segmentation, diagnosis, and prognosis approaches.

Semin Cancer Biol. 2023-11

[6]
Deep learning empowered breast cancer diagnosis: Advancements in detection and classification.

PLoS One. 2024

[7]
Label-Efficient Breast Cancer Histopathological Image Classification.

IEEE J Biomed Health Inform. 2018-12-5

[8]
Use of a deep learning algorithm for non-mass enhancement on breast MRI: comparison with radiologists' interpretations at various levels.

Jpn J Radiol. 2023-10

[9]
Weakly-supervised deep learning for ultrasound diagnosis of breast cancer.

Sci Rep. 2021-12-21

[10]
Artificial intelligence in digital breast pathology: Techniques and applications.

Breast. 2019-12-19

引用本文的文献

[1]
Multimodal integration strategies for clinical application in oncology.

Front Pharmacol. 2025-8-20

[2]
Deep Learning Applications in Clinical Cancer Detection: A Review of Implementation Challenges and Solutions.

Mayo Clin Proc Digit Health. 2025-7-18

[3]
Artificial intelligence-driven pathomics in hepatocellular carcinoma: current developments, challenges and perspectives.

Discov Oncol. 2025-7-28

[4]
Deep Learning-Enhanced T1-Weighted Imaging for Breast MRI at 1.5T.

Diagnostics (Basel). 2025-7-1

[5]
Artificial Intelligence in cancer epigenomics: a review on advances in pan-cancer detection and precision medicine.

Epigenetics Chromatin. 2025-6-14

[6]
Dual action of pyrimidine derivatives: Targeting tamoxifen resistance in breast cancer.

Transl Oncol. 2025-8

[7]
Optimizing therapeutic approaches for HR+/HER2- advanced breast cancer: clinical perspectives on biomarkers and treatment strategies post-CDK4/6 inhibitor progression.

Cancer Drug Resist. 2025-1-22

本文引用的文献

[1]
Screening and Testing for Homologous Recombination Repair Deficiency (HRD) in Breast Cancer: an Overview of the Current Global Landscape.

Curr Oncol Rep. 2024-8

[2]
Screening for Breast Cancer: US Preventive Services Task Force Recommendation Statement.

JAMA. 2024-6-11

[3]
Deep learning in cancer genomics and histopathology.

Genome Med. 2024-3-27

[4]
Breast cancer highlights from 2023: Knowledge to guide practice and future research.

Breast. 2024-4

[5]
Early breast cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up.

Ann Oncol. 2024-2

[6]
Novel research and future prospects of artificial intelligence in cancer diagnosis and treatment.

J Hematol Oncol. 2023-11-27

[7]
Big data and artificial intelligence in cancer research.

Trends Cancer. 2024-2

[8]
Hormone Receptor Signaling and Breast Cancer Resistance to Anti-Tumor Immunity.

Int J Mol Sci. 2023-10-10

[9]
Deep learning, radiomics and radiogenomics applications in the digital breast tomosynthesis: a systematic review.

BMC Bioinformatics. 2023-10-26

[10]
Evaluation of tumour infiltrating lymphocytes in luminal breast cancer using artificial intelligence.

Br J Cancer. 2023-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索