Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany; Department of Neuroradiology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany.
Eur J Radiol. 2023 Sep;166:110948. doi: 10.1016/j.ejrad.2023.110948. Epub 2023 Jun 25.
PURPOSE: This study aimed to assess the technical feasibility, the impact on image quality, and the acquisition time (TA) of a new deep-learning-based reconstruction algorithm in diffusion weighted imaging (DWI) of breast magnetic resonance imaging (MRI). METHODS: Retrospective analysis of 55 female patients who underwent breast DWI at 1.5 T. Raw data were reconstructed using a deep-learning (DL) reconstruction algorithm on a subset of the acquired averages, therefore a reduction of TA. Clinically used standard DWI sequence (DWI) and the DL-reconstructed images (DWI) were compared. Two radiologists rated the image quality of b800 and ADC images, using a Likert-scale from 1 to 5 with 5 being considered perfect image quality. Signal intensities were measured by placing a region of interest (ROI) at the same position in both sequences. RESULTS: TA was reduced by 40 % in DWI, compared to DWI, DWI improved noise and sharpness while maintaining contrast, the level of artifacts, and diagnostic confidence. There were no differences regarding the signal intensity values of the apparent diffusion coefficient (ADC), (p = 0.955), b50-values (p = 0.070) and b800-values (p = 0.415) comparing standard and DL-imaging. Lesion assessment showed no differences regarding the number of lesions in ADC and DWI (both p = 1.000) and regarding the lesion diameter in DWI (p = 0.961;0.972) and ADC (p = 0.961;0.972). CONCLUSIONS: The novel deep-learning-based reconstruction algorithm significantly reduces TA in breast DWI, while improving sharpness, reducing noise, and maintaining a comparable level of image quality, artifacts, contrast, and diagnostic confidence. DWI does not influence the quantifiable parameters.
目的:本研究旨在评估一种新的基于深度学习的重建算法在乳腺磁共振成像(MRI)扩散加权成像(DWI)中的技术可行性、对图像质量的影响以及采集时间(TA)。
方法:回顾性分析了 55 名在 1.5T 行乳腺 DWI 的女性患者的资料。在采集的平均值的子集上使用深度学习(DL)重建算法重建原始数据,从而减少 TA。比较了临床使用的标准 DWI 序列(DWI)和 DL 重建图像(DWI)。两名放射科医生使用 1 到 5 的李克特量表对 b800 和 ADC 图像的图像质量进行评分,5 分表示完美的图像质量。通过在两个序列的相同位置放置感兴趣区域(ROI)来测量信号强度。
结果:与 DWI 相比,DWI 的 TA 降低了 40%,DWI 提高了噪声和锐度,同时保持了对比度、伪影水平和诊断信心。比较标准和 DL 成像,ADC 的信号强度值(p=0.955)、b50 值(p=0.070)和 b800 值(p=0.415)没有差异。在 ADC 和 DWI 中,病变评估在 ADC 和 DWI 中的病变数量(均 p=1.000)以及在 DWI(p=0.961;0.972)和 ADC(p=0.961;0.972)中的病变直径方面没有差异。
结论:新的基于深度学习的重建算法在乳腺 DWI 中显著减少了 TA,同时提高了锐度,降低了噪声,保持了相当的图像质量、伪影、对比度和诊断信心。DWI 不影响可量化参数。
Diagn Interv Imaging. 2023-4
Diagnostics (Basel). 2025-7-1
J Magn Reson Imaging. 2024-12