文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

1.5T 乳腺 MRI 的新型基于深度学习的扩散加权成像序列。

Novel deep-learning-based diffusion weighted imaging sequence in 1.5 T breast MRI.

机构信息

Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany; Department of Neuroradiology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.

Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany.

出版信息

Eur J Radiol. 2023 Sep;166:110948. doi: 10.1016/j.ejrad.2023.110948. Epub 2023 Jun 25.


DOI:10.1016/j.ejrad.2023.110948
PMID:37481831
Abstract

PURPOSE: This study aimed to assess the technical feasibility, the impact on image quality, and the acquisition time (TA) of a new deep-learning-based reconstruction algorithm in diffusion weighted imaging (DWI) of breast magnetic resonance imaging (MRI). METHODS: Retrospective analysis of 55 female patients who underwent breast DWI at 1.5 T. Raw data were reconstructed using a deep-learning (DL) reconstruction algorithm on a subset of the acquired averages, therefore a reduction of TA. Clinically used standard DWI sequence (DWI) and the DL-reconstructed images (DWI) were compared. Two radiologists rated the image quality of b800 and ADC images, using a Likert-scale from 1 to 5 with 5 being considered perfect image quality. Signal intensities were measured by placing a region of interest (ROI) at the same position in both sequences. RESULTS: TA was reduced by 40 % in DWI, compared to DWI, DWI improved noise and sharpness while maintaining contrast, the level of artifacts, and diagnostic confidence. There were no differences regarding the signal intensity values of the apparent diffusion coefficient (ADC), (p = 0.955), b50-values (p = 0.070) and b800-values (p = 0.415) comparing standard and DL-imaging. Lesion assessment showed no differences regarding the number of lesions in ADC and DWI (both p = 1.000) and regarding the lesion diameter in DWI (p = 0.961;0.972) and ADC (p = 0.961;0.972). CONCLUSIONS: The novel deep-learning-based reconstruction algorithm significantly reduces TA in breast DWI, while improving sharpness, reducing noise, and maintaining a comparable level of image quality, artifacts, contrast, and diagnostic confidence. DWI does not influence the quantifiable parameters.

摘要

目的:本研究旨在评估一种新的基于深度学习的重建算法在乳腺磁共振成像(MRI)扩散加权成像(DWI)中的技术可行性、对图像质量的影响以及采集时间(TA)。

方法:回顾性分析了 55 名在 1.5T 行乳腺 DWI 的女性患者的资料。在采集的平均值的子集上使用深度学习(DL)重建算法重建原始数据,从而减少 TA。比较了临床使用的标准 DWI 序列(DWI)和 DL 重建图像(DWI)。两名放射科医生使用 1 到 5 的李克特量表对 b800 和 ADC 图像的图像质量进行评分,5 分表示完美的图像质量。通过在两个序列的相同位置放置感兴趣区域(ROI)来测量信号强度。

结果:与 DWI 相比,DWI 的 TA 降低了 40%,DWI 提高了噪声和锐度,同时保持了对比度、伪影水平和诊断信心。比较标准和 DL 成像,ADC 的信号强度值(p=0.955)、b50 值(p=0.070)和 b800 值(p=0.415)没有差异。在 ADC 和 DWI 中,病变评估在 ADC 和 DWI 中的病变数量(均 p=1.000)以及在 DWI(p=0.961;0.972)和 ADC(p=0.961;0.972)中的病变直径方面没有差异。

结论:新的基于深度学习的重建算法在乳腺 DWI 中显著减少了 TA,同时提高了锐度,降低了噪声,保持了相当的图像质量、伪影、对比度和诊断信心。DWI 不影响可量化参数。

相似文献

[1]
Novel deep-learning-based diffusion weighted imaging sequence in 1.5 T breast MRI.

Eur J Radiol. 2023-9

[2]
Acquisition time reduction of diffusion-weighted liver imaging using deep learning image reconstruction.

Diagn Interv Imaging. 2023-4

[3]
Shortening Acquisition Time and Improving Image Quality for Pelvic MRI Using Deep Learning Reconstruction for Diffusion-Weighted Imaging at 1.5 T.

Acad Radiol. 2024-3

[4]
Accelerated Diffusion-Weighted Imaging in 3 T Breast MRI Using a Deep Learning Reconstruction Algorithm With Superresolution Processing: A Prospective Comparative Study.

Invest Radiol. 2023-12-1

[5]
Optimizing Image Quality with High-Resolution, Deep-Learning-Based Diffusion-Weighted Imaging in Breast Cancer Patients at 1.5 T.

Diagnostics (Basel). 2024-8-10

[6]
Clinical feasibility of accelerated diffusion weighted imaging of the abdomen with deep learning reconstruction: Comparison with conventional diffusion weighted imaging.

Eur J Radiol. 2022-9

[7]
Deep Learning k-Space-to-Image Reconstruction Facilitates High Spatial Resolution and Scan Time Reduction in Diffusion-Weighted Imaging Breast MRI.

J Magn Reson Imaging. 2024-9

[8]
Clinical feasibility of deep learning reconstruction in liver diffusion-weighted imaging: Improvement of image quality and impact on apparent diffusion coefficient value.

Eur J Radiol. 2023-11

[9]
Combined Deep Learning-based Super-Resolution and Partial Fourier Reconstruction for Gradient Echo Sequences in Abdominal MRI at 3 Tesla: Shortening Breath-Hold Time and Improving Image Sharpness and Lesion Conspicuity.

Acad Radiol. 2023-5

[10]
Deep Learning-Accelerated Liver Diffusion-Weighted Imaging: Intraindividual Comparison and Additional Phantom Study of Free-Breathing and Respiratory-Triggering Acquisitions.

Invest Radiol. 2023-11-1

引用本文的文献

[1]
Deep Learning-Enhanced T1-Weighted Imaging for Breast MRI at 1.5T.

Diagnostics (Basel). 2025-7-1

[2]
Can a low b-value diffusion-weighted imaging sequence replace the standard T2-weighted fluid-sensitive sequence in breast MRI? A single-center prospective study.

Eur Radiol. 2025-5-7

[3]
Faster Acquisition and Improved Image Quality of T2-Weighted Dixon Breast MRI at 3T Using Deep Learning: A Prospective Study.

Korean J Radiol. 2025-1

[4]
Exploring the feasibility of FOCUS DWI with deep learning reconstruction for breast cancer diagnosis: A comparative study with conventional DWI.

PLoS One. 2024

[5]
Reducing energy consumption in musculoskeletal MRI using shorter scan protocols, optimized magnet cooling patterns, and deep learning sequences.

Eur Radiol. 2025-4

[6]
Optimizing Image Quality with High-Resolution, Deep-Learning-Based Diffusion-Weighted Imaging in Breast Cancer Patients at 1.5 T.

Diagnostics (Basel). 2024-8-10

[7]
AI Applications to Breast MRI: Today and Tomorrow.

J Magn Reson Imaging. 2024-12

[8]
Evaluation of a Deep Learning Reconstruction for High-Quality T2-Weighted Breast Magnetic Resonance Imaging.

Tomography. 2023-10-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索