Zhou Xuanyu, Ouyang He, Zhang Yuan, Zhu Ziqiang, Wang Zhen, Cheng Zirui, Hu Yubing, Zhang Yanan
Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, China.
National Special Superfine Powder Engineering Research Center of China, Nanjing University of Science and Technology, Nanjing 210014, China.
Polymers (Basel). 2025 Jul 6;17(13):1880. doi: 10.3390/polym17131880.
Thermoplastic polyurethane (TPU) combines elastomeric and thermoplastic properties but suffers from insufficient rigidity and strength for structural applications. Herein, we developed novel carbon fiber-reinforced TPU (CF/TPU) composites filaments and utilize melt extrusion for 3D printing to maintain elasticity, while achieving enhanced stiffness and strength through multi scale-the control of fiber content and optimization of printing parameters, reaching a rigid-elastic balance. A systematic evaluation of CF content (0-25%) and printing parameters revealed optimal performance to be at 220-230 °C and 40 mm/s for ensuring proper flow to wet fibers without polymer degradation. Compared with TPU, 20% CF/TPU exhibited 63.65%, 105.51%, and 93.69% improvements in tensile, compressive, and impact strength, respectively, alongside 70.88% and 72.92% enhancements in compression and impact energy absorption. This work establishes a fundamental framework for developing rigid-elastic hybrid materials with tailored energy absorption capabilities through rational material design and optimized additive manufacturing processes.
热塑性聚氨酯(TPU)兼具弹性体和热塑性特性,但在结构应用中刚性和强度不足。在此,我们开发了新型碳纤维增强TPU(CF/TPU)复合长丝,并利用熔融挤出进行3D打印,以保持弹性,同时通过多尺度控制纤维含量和优化打印参数来提高刚度和强度,实现刚弹性平衡。对CF含量(0-25%)和打印参数的系统评估表明,在220-230°C和40mm/s的条件下性能最佳,可确保适当的流动以浸润纤维而不会导致聚合物降解。与TPU相比,20%CF/TPU的拉伸强度、压缩强度和冲击强度分别提高了63.65%、105.51%和93.69%,压缩能量吸收和冲击能量吸收分别提高了70.88%和72.92%。这项工作通过合理的材料设计和优化的增材制造工艺,建立了一个开发具有定制能量吸收能力的刚弹性混合材料的基本框架。