Abdalazim Nouran, Alchieri Leonardo, Alecci Lidia, Barbiero Pietro, Santini Silvia
Faculty of Informatics, Università della Svizzera Italiana, 6900 Lugano, Switzerland.
Sensors (Basel). 2025 Jun 27;25(13):4012. doi: 10.3390/s25134012.
Machine learning models for personal informatics systems are typically trained offline on , resulting in These models may suffer performance degradation in real-world settings due to , i.e., differences in data distributions across users and contexts. Domain adaptation techniques can address this by, personalizing models with user-specific data. on of both population and personalized models sleep quality recognition. . Our analysis shows domain shift accuracy of population models by up to 18.54 percentage points, when on . Personalized models, , show robust performance across datasets. However, , limiting their . To the limitations , we propose a novel unsupervised domain adaptation approach: the cluster-based population model (CBPM). CBPM achieves accuracy improvements of up to 13.45 percentage points without requiring user-specific records or .
用于个人信息系统的机器学习模型通常是在离线数据上进行训练的,这会导致这些模型在实际应用中由于数据分布差异(即不同用户和环境之间的数据分布差异)而出现性能下降。领域自适应技术可以通过使用特定用户数据对模型进行个性化来解决这个问题。在群体模型和个性化模型上进行睡眠质量识别的实验表明,当在新数据集上进行测试时,领域转移会使群体模型的准确率下降高达18.54个百分点。相比之下,个性化模型在不同数据集上表现出稳健的性能。然而,个性化模型需要特定用户记录,这限制了它们的应用。为了克服这些限制,我们提出了一种新颖的无监督领域自适应方法:基于聚类的群体模型(CBPM)。CBPM在不需要特定用户记录或标签的情况下,准确率提高了高达13.45个百分点。