超越检测:迈向临床精神卫生保健中的可操作传感研究
Beyond Detection: Towards Actionable Sensing Research in Clinical Mental Healthcare.
作者信息
Adler Daniel A, Yang Yuewen, Viranda Thalia, Xu Xuhai, Mohr David C, VAN Meter Anna R, Tartaglia Julia C, Jacobson Nicholas C, Wang Fei, Estrin Deborah, Choudhury Tanzeem
机构信息
Cornell Tech, Cornell University, USA.
Columbia University, USA.
出版信息
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2024 Nov;8(4). doi: 10.1145/3699755. Epub 2024 Nov 21.
Researchers in ubiquitous computing have long promised that passive sensing will revolutionize mental health measurement by detecting individuals in a population experiencing a mental health disorder or specific symptoms. Recent work suggests that detection tools do not generalize well when trained and tested in more heterogeneous samples. In this work, we contribute a narrative review and findings from two studies with 41 mental health clinicians to understand these generalization challenges. Our findings motivate research on actionable sensing, as an alternative to detection research, studying how passive sensing can augment traditional mental health measures to support actions in clinical care. Specifically, we identify how passive sensing can support clinical actions by revealing patients' presenting problems for treatment and identifying targets for behavior change and symptom reduction, but passive data requires additional contextual information to be appropriately interpreted and used in care. We conclude by suggesting research at the intersection of actionable sensing and mental healthcare, to align technical research in ubiquitous computing with clinical actions and needs.
普适计算领域的研究人员长期以来一直承诺,被动感知将通过检测人群中患有精神疾病或特定症状的个体,彻底改变心理健康测量方式。最近的研究表明,当在更多样化的样本中进行训练和测试时,检测工具的通用性不佳。在这项工作中,我们进行了一项叙述性综述,并呈现了两项针对41名心理健康临床医生的研究结果,以了解这些通用性挑战。我们的研究结果推动了对可行动感知的研究,作为检测研究的替代方案,研究被动感知如何增强传统心理健康测量方法,以支持临床护理中的行动。具体而言,我们确定了被动感知如何通过揭示患者的治疗问题以及确定行为改变和症状减轻的目标来支持临床行动,但被动数据需要额外的背景信息才能在护理中得到适当的解释和应用。我们建议在可行动感知与心理保健的交叉领域开展研究,以使普适计算领域的技术研究与临床行动和需求保持一致,以此作为结论。