Suppr超能文献

Few-Layer Black Phosphorus Exposed to Dry Oxidation的减薄效应

Thinning Effect of Few-Layer Black Phosphorus Exposed to Dry Oxidation.

作者信息

Li Qianyi, Yang Hang, Zheng Xiaofang, Chen Yu, Wang Chuanxin, Han Yujie, Guo Yujing, Zheng Xiaoming, Wei Yuehua

机构信息

Hunan Provincial Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China.

Beijing Blue Sky Innovation for Frontier Science, Beijing 100085, China.

出版信息

Nanomaterials (Basel). 2025 Jun 23;15(13):974. doi: 10.3390/nano15130974.

Abstract

Few-layer black phosphorus (BP) holds significant potential for next-generation electronics due to its tunable bandgap and high carrier mobility. The layer modulation of BP is essential in the applications of electronic devices ascribed to its thickness-dependent electronic properties. However, precisely controlling its thickness still presents a challenge for optimizing performance. In this study, we demonstrate that BP can be precisely thinned when exposed to dry oxygen (40% humidity, low oxygen concentration) in a dark environment, which is different from that exposed to humid oxygen (100% humidity, low oxygen concentration) without light illumination. The thinned BP not only demonstrates enhanced stability but also exhibits significant improvements in its electrical properties. The variation in bandgap from 0.3 to 2 eV, resulting in the / ratio increased from 10 to 10, and the hole mobility improved from 235 cm V s to 851 cm V s, was ascribed to the layer-by-layer thinning and p-type doping effects induced by the formed PO. Our finding demonstrates significant potential of BP in future nanoelectronic and optoelectronic applications.

摘要

少层黑磷(BP)因其可调节的带隙和高载流子迁移率,在下一代电子学领域具有巨大潜力。由于BP的电子特性依赖于其厚度,因此对BP进行层调制在电子器件应用中至关重要。然而,精确控制其厚度仍然是优化性能的一个挑战。在本研究中,我们证明,在黑暗环境中暴露于干燥氧气(湿度40%,低氧浓度)时,BP可以精确减薄,这与在无光照条件下暴露于潮湿氧气(湿度100%,低氧浓度)的情况不同。减薄后的BP不仅表现出增强的稳定性,其电学性能也有显著改善。带隙从0.3 eV变化到2 eV,导致/比率从10增加到10,空穴迁移率从235 cm²V⁻¹s⁻¹提高到851 cm²V⁻¹s⁻¹,这归因于所形成的PO诱导的逐层减薄和p型掺杂效应。我们的发现表明BP在未来纳米电子学和光电子学应用中具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/749e/12251546/fbb8c2bde797/nanomaterials-15-00974-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验