Cui Yuzhu, Wang Zekai, Zhao Mingliang, Wang Zhihui, Zong Lu
Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao 266042, China.
Nanomaterials (Basel). 2025 Jun 26;15(13):996. doi: 10.3390/nano15130996.
Cellulose nanocrystals (CNCs), derived from renewable biomass, have emerged as a pivotal component in the design of biomimetic composite hydrogels due to their exceptional mechanical strength, biocompatibility, and tunable surface chemistry. This review comprehensively explores recent advancements in surface modification strategies for CNCs (physical adsorption, chemical grafting, and bio-functionalization) and their impacts on the structure and properties of hydrogel networks, with particular emphasis on mechanical properties. Future applications in light/thermal/electrical-responsive soft actuators are critically analyzed. Guided by biomimetic design principles, the anisotropic mechanical responses induced by CNC-oriented alignment are explored, along with their cutting-edge advancements in soft robotics, wearable sensing, and biomedical devices. Perspectives are provided on future directions, including multi-stimuli synergistic actuation systems and sensing-actuation integration architectures. This work establishes a fundamental framework for designing CNC-enhanced smart hydrogels with tailored functionalities and hierarchical structures.
纤维素纳米晶体(CNCs)源自可再生生物质,因其卓越的机械强度、生物相容性和可调节的表面化学性质,已成为仿生复合水凝胶设计中的关键成分。本综述全面探讨了CNCs表面改性策略(物理吸附、化学接枝和生物功能化)的最新进展及其对水凝胶网络结构和性能的影响,尤其着重于机械性能。对其在光/热/电响应软致动器中的未来应用进行了批判性分析。在仿生设计原则的指导下,探索了由CNC定向排列引起的各向异性机械响应,以及它们在软机器人技术、可穿戴传感和生物医学设备方面的前沿进展。还提供了对未来方向的展望,包括多刺激协同驱动系统和传感-驱动集成架构。这项工作为设计具有定制功能和层次结构的CNC增强智能水凝胶建立了一个基本框架。