Ebenezer Preetha, Kumara S P S N Buddhika Sampath, Senevirathne S W M A Ishantha, Bray Laura J, Wangchuk Phurpa, Mathew Asha, Yarlagadda Prasad K D V
School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4000, Australia.
Nanomaterials (Basel). 2025 Jul 1;15(13):1023. doi: 10.3390/nano15131023.
The growing prevalence of bacterial infections and the alarming rise of antimicrobial resistance (AMR) have driven the need for innovative antimicrobial coatings for medical implants and biomaterials. However, implant surface properties, such as roughness, chemistry, and reactivity, critically influence biological interactions and must be engineered to ensure biocompatibility, corrosion resistance, and sustained antibacterial activity. This review evaluates three principal categories of antimicrobial agents utilized in surface functionalization: metal/metaloxide nanoparticles, antibiotics, and phytochemical compounds. Metal/metaloxide-based coatings, especially those incorporating silver (Ag), zinc oxide (ZnO), and copper oxide (CuO), offer broad-spectrum antimicrobial efficacy through mechanisms such as reactive oxygen species (ROS) generation and bacterial membrane disruption, with a reduced risk of resistance development. Antibiotic-based coatings enable localized drug delivery but often face limitations related to burst release, cytotoxicity, and diminishing effectiveness against multidrug-resistant (MDR) strains. In contrast, phytochemical-derived coatings-using bioactive plant compounds such as curcumin, eugenol, and quercetin-present a promising, biocompatible, and sustainable alternative. These agents not only exhibit antimicrobial properties but also provide anti-inflammatory, antioxidant, and osteogenic benefits, making them multifunctional tools for implant surface modification. The integration of these antimicrobial strategies aims to reduce bacterial adhesion, inhibit biofilm formation, and enhance tissue regeneration. By leveraging the synergistic effects of metal/metaloxide nanoparticles, antibiotics, and phytochemicals, next-generation implant coatings hold the potential to significantly improve infection control and clinical outcomes in implant-based therapies.
细菌感染的日益普遍以及抗菌药物耐药性(AMR)的惊人上升,推动了对用于医疗植入物和生物材料的创新抗菌涂层的需求。然而,植入物的表面特性,如粗糙度、化学性质和反应性,对生物相互作用有着至关重要的影响,必须进行设计以确保生物相容性、耐腐蚀性和持续的抗菌活性。本综述评估了用于表面功能化的三类主要抗菌剂:金属/金属氧化物纳米颗粒、抗生素和植物化学化合物。基于金属/金属氧化物的涂层,尤其是那些含有银(Ag)、氧化锌(ZnO)和氧化铜(CuO)的涂层,通过活性氧(ROS)生成和细菌膜破坏等机制提供广谱抗菌效果,且耐药性发展风险降低。基于抗生素的涂层能够实现局部药物递送,但往往面临与突释、细胞毒性以及对多重耐药(MDR)菌株有效性降低相关的限制。相比之下,源自植物化学物质的涂层——使用姜黄素、丁香酚和槲皮素等生物活性植物化合物——提供了一种有前景、生物相容且可持续的替代方案。这些药剂不仅具有抗菌特性,还具有抗炎、抗氧化和成骨益处,使其成为植入物表面改性的多功能工具。这些抗菌策略的整合旨在减少细菌粘附、抑制生物膜形成并促进组织再生。通过利用金属/金属氧化物纳米颗粒、抗生素和植物化学物质的协同效应,下一代植入物涂层有望显著改善基于植入物的治疗中的感染控制和临床结果。
Nanomaterials (Basel). 2025-7-1
Curr Drug Metab. 2017
J Biomed Mater Res A. 2025-7
Future Microbiol. 2025-3
Arch Ital Urol Androl. 2025-6-30
J Clin Orthop Trauma. 2025-4-24
ACS Biomater Sci Eng. 2025-1-13
J Agric Food Chem. 2024-7-31
Front Pharmacol. 2024-1-25
Chem Rev. 2024-2-14