Suppr超能文献

一种用于早期结直肠癌综合诊断、预后和治疗的新型集成框架:胃肠病学特定变压器语言模型与多个决策树的整合

A Novel Ensemble Framework for Comprehensive Early-Stage Colorectal Cancer Diagnosis, Prognosis, and Treatment: Integration of Gastroenterology-Specific Transformer Language Models and Multiple Decision Trees.

作者信息

Simsek Cem, Ucdal Mete, Yalcin Suayib, Karakoc Derya

机构信息

Basic Surgical Research, Institute of Health Sciences, Hacettepe University, 06230 Ankara, Turkey.

Division of Gastroenterology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey.

出版信息

J Clin Med. 2025 Jun 23;14(13):4467. doi: 10.3390/jcm14134467.

Abstract

Colorectal cancer (CRC) remains a significant global health burden, with early detection and intervention crucial for improving patient outcomes. This study aims to develop and evaluate a novel proof-of-concept ensemble framework combining transformer-based language models and decision tree-based models for early-stage CRC screening, diagnosis, and prognosis. The ensemble framework consists of four key components: (1) GastroGPT, a transformer-based language model for extracting relevant data points from patient histories; (2) a decision tree-based model for assessing CRC risk and recommending colonoscopy; (3) GastroGPT for extracting data points from early CRC patients' histories; and (4) a suite of decision tree-based models for predicting survival outcomes in early-stage CRC patients. The study employed a retrospective, observational, methodological design using simulated patient cases. GastroGPT demonstrated high accuracy in extracting relevant data points from patient histories. The decision tree-based model for CRC risk assessment achieved an area under the receiver operating characteristic curve (AUC-ROC) of 0.85 (95% CI: 0.78-0.92) in predicting the need for colonoscopy. The decision tree-based models for survival prediction showed strong performance, with C-indices ranging from 0.71 to 0.75 for overall survival and disease-free survival at 24, 36, and 48 months. The novel ensemble framework demonstrates promising performance in early-stage CRC screening, diagnosis, and prognosis. Further research is needed to validate the models using larger, real-world datasets and to assess their clinical utility in prospective studies.

摘要

结直肠癌(CRC)仍然是一个重大的全球健康负担,早期检测和干预对于改善患者预后至关重要。本研究旨在开发和评估一种新颖的概念验证集成框架,该框架将基于Transformer的语言模型和基于决策树的模型相结合,用于早期CRC筛查、诊断和预后。该集成框架由四个关键组件组成:(1)GastroGPT,一种基于Transformer的语言模型,用于从患者病史中提取相关数据点;(2)一个基于决策树的模型,用于评估CRC风险并推荐结肠镜检查;(3)GastroGPT,用于从早期CRC患者的病史中提取数据点;(4)一套基于决策树的模型,用于预测早期CRC患者的生存结果。该研究采用了回顾性、观察性的方法设计,使用模拟患者病例。GastroGPT在从患者病史中提取相关数据点方面表现出高准确性。基于决策树的CRC风险评估模型在预测结肠镜检查需求时,受试者操作特征曲线下面积(AUC-ROC)为0.85(95%CI:0.78-0.92)。基于决策树的生存预测模型表现强劲,在24、36和48个月时,总生存和无病生存的C指数范围为0.71至0.

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1b6/12249666/0abcbf7640ae/jcm-14-04467-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验