Suppr超能文献

使用基于深度学习的决策支持系统,通过非增强计算机断层扫描预测急性大血管闭塞

Using a Deep Learning-Based Decision Support System to Predict Emergent Large Vessel Occlusion Using Non-Contrast Computed Tomography.

作者信息

Lee Seong-Joon, Kim Dohyun, Choi Dae Han, Lim Yong Su, Park Gyuha, Jung Sumin, Song Soohwa, Hong Ji Man, Shin Dong Hoon, Kim Myeong Jin, Lee Jin Soo

机构信息

Department of Neurology, Ajou University School of Medicine, 164 World Cup-ro, Yeongtong-gu, Suwon-si 16499, Gyeonggi-do, Republic of Korea.

Research Division, Heuron Co., Ltd., 10F, C, 150 Yeongdeungpo-ro, Yeongdeungpo-gu, Seoul 07282, Republic of Korea.

出版信息

J Clin Med. 2025 Jun 30;14(13):4635. doi: 10.3390/jcm14134635.

Abstract

This retrospective, multi-reader, blinded, pivotal trial assessed the performance of artificial intelligence (AI)-based clinical decision support system used to improve the clinician detection of emergent large vessel occlusion (ELVO) using brain non-contrast computed tomography (NCCT) images. We enrolled 477 patients, of which 112 had anterior circulation ELVO, and 365 served as controls. First, patients were evaluated by the consensus of four clinicians without AI assistance through the identification of ELVO using NCCT images. After a 2-week washout period, the same investigators performed an AI-assisted evaluation. The primary and secondary endpoints in ELVO prediction between unassisted and assisted readings were sensitivity and specificity and AUROC and individual-level sensitivity and specificity, respectively. The standalone predictive ability of the AI system was also analyzed. The assisted evaluations resulted in higher sensitivity and specificity than the unassisted evaluations at 75.9% vs. 92.0% ( < 0.01) and 83.0% vs. 92.6% ( < 0.01) while also resulting in higher accuracy and AUROC at 81.3% vs. 92.5%, ( < 0.01) and 0.87 [95% CI: 0.84-0.90] vs. 0.95 [95% CI: 0.93-0.97] ( < 0.01). Furthermore, the AI system improved sensitivity and specificity for three and four readers, respectively, and had a standalone sensitivity of 88.4% (95% CI: 81.0-93.7) and a specificity of 91.2% (95% CI: 87.9-93.9). This study shows that an AI-based clinical decision support system can improve the clinical detection of ELVO using NCCT. Moreover, the AI system may facilitate acute stroke reperfusion therapy by assisting physicians in the initial triaging of patients, particularly in thrombectomy-incapable centers.

摘要

这项回顾性、多阅片者、盲法关键试验评估了基于人工智能(AI)的临床决策支持系统的性能,该系统用于利用脑部非增强计算机断层扫描(NCCT)图像提高临床医生对急性大血管闭塞(ELVO)的检测能力。我们纳入了477例患者,其中112例患有前循环ELVO,365例作为对照。首先,由四名临床医生在无AI辅助的情况下通过使用NCCT图像识别ELVO达成共识来评估患者。经过2周的洗脱期后,相同的研究人员进行了AI辅助评估。在无辅助和辅助阅片的ELVO预测中,主要和次要终点分别是敏感性和特异性以及曲线下面积(AUROC)和个体水平的敏感性和特异性。还分析了AI系统的独立预测能力。辅助评估的敏感性和特异性高于无辅助评估,分别为75.9%对92.0%(P<0.01)和83.0%对92.6%(P<0.01),同时准确性和AUROC也更高,分别为81.3%对92.5%(P<0.01)以及0.87 [95%置信区间(CI):0.84 - 0.90]对0.95 [95% CI:0.93 - 0.97](P<0.01)。此外,AI系统分别提高了三名和四名阅片者的敏感性和特异性,其独立敏感性为88.4%(95% CI:81.0 - 93.7),特异性为91.2%(95% CI:87.9 - 93.9)。这项研究表明,基于AI的临床决策支持系统可以利用NCCT提高对ELVO的临床检测能力。此外,AI系统可以通过协助医生对患者进行初始分诊,特别是在无法进行血栓切除术的中心,促进急性中风再灌注治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4385/12250463/71e6ee2a12f5/jcm-14-04635-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验