Suppr超能文献

深度学习模型对放射科医师解读胸部 X 光片准确性的影响:一项回顾性、多读者多病例研究。

Effect of a comprehensive deep-learning model on the accuracy of chest x-ray interpretation by radiologists: a retrospective, multireader multicase study.

机构信息

Annalise.ai, Sydney, NSW, Australia; Department of Radiology, Alfred Health, Melbourne, VIC, Australia.

Annalise.ai, Sydney, NSW, Australia.

出版信息

Lancet Digit Health. 2021 Aug;3(8):e496-e506. doi: 10.1016/S2589-7500(21)00106-0. Epub 2021 Jul 1.

Abstract

BACKGROUND

Chest x-rays are widely used in clinical practice; however, interpretation can be hindered by human error and a lack of experienced thoracic radiologists. Deep learning has the potential to improve the accuracy of chest x-ray interpretation. We therefore aimed to assess the accuracy of radiologists with and without the assistance of a deep-learning model.

METHODS

In this retrospective study, a deep-learning model was trained on 821 681 images (284 649 patients) from five data sets from Australia, Europe, and the USA. 2568 enriched chest x-ray cases from adult patients (≥16 years) who had at least one frontal chest x-ray were included in the test dataset; cases were representative of inpatient, outpatient, and emergency settings. 20 radiologists reviewed cases with and without the assistance of the deep-learning model with a 3-month washout period. We assessed the change in accuracy of chest x-ray interpretation across 127 clinical findings when the deep-learning model was used as a decision support by calculating area under the receiver operating characteristic curve (AUC) for each radiologist with and without the deep-learning model. We also compared AUCs for the model alone with those of unassisted radiologists. If the lower bound of the adjusted 95% CI of the difference in AUC between the model and the unassisted radiologists was more than -0·05, the model was considered to be non-inferior for that finding. If the lower bound exceeded 0, the model was considered to be superior.

FINDINGS

Unassisted radiologists had a macroaveraged AUC of 0·713 (95% CI 0·645-0·785) across the 127 clinical findings, compared with 0·808 (0·763-0·839) when assisted by the model. The deep-learning model statistically significantly improved the classification accuracy of radiologists for 102 (80%) of 127 clinical findings, was statistically non-inferior for 19 (15%) findings, and no findings showed a decrease in accuracy when radiologists used the deep-learning model. Unassisted radiologists had a macroaveraged mean AUC of 0·713 (0·645-0·785) across all findings, compared with 0·957 (0·954-0·959) for the model alone. Model classification alone was significantly more accurate than unassisted radiologists for 117 (94%) of 124 clinical findings predicted by the model and was non-inferior to unassisted radiologists for all other clinical findings.

INTERPRETATION

This study shows the potential of a comprehensive deep-learning model to improve chest x-ray interpretation across a large breadth of clinical practice.

FUNDING

Annalise.ai.

摘要

背景

胸部 X 光在临床实践中被广泛应用,但由于人为错误和缺乏有经验的胸部放射科医生,其解释可能会受到阻碍。深度学习有可能提高胸部 X 光解释的准确性。因此,我们旨在评估有和没有深度学习模型辅助的放射科医生的准确性。

方法

在这项回顾性研究中,一个深度学习模型在来自澳大利亚、欧洲和美国的五个数据集的 821681 张图像(284649 名患者)上进行了训练。从至少有一张正位胸部 X 光片的 284649 名患者中纳入了 2568 例富含胸部 X 光的成年患者(≥16 岁)病例,这些病例代表了住院、门诊和急诊环境。20 名放射科医生在有和没有深度学习模型辅助的情况下,使用 3 个月的洗脱期,对这些病例进行了评估。我们通过计算每个放射科医生在有和没有深度学习模型辅助时的受试者工作特征曲线下面积(AUC),评估了 127 种临床发现中胸部 X 光解释准确性的变化。我们还比较了模型单独和未辅助放射科医生的 AUC。如果模型和未辅助放射科医生之间 AUC 差异的调整 95%CI 的下限大于-0.05,则认为该模型在该发现上不劣于未辅助放射科医生。如果下限超过 0,则认为该模型优于未辅助放射科医生。

结果

在 127 种临床发现中,未辅助的放射科医生的宏观平均 AUC 为 0.713(95%CI 0.645-0.785),而在有模型辅助时为 0.808(0.763-0.839)。深度学习模型在 127 种临床发现中的 102 种(80%)中显著提高了放射科医生的分类准确性,19 种(15%)发现具有统计学上的非劣效性,而当放射科医生使用深度学习模型时,没有发现准确性降低。未辅助的放射科医生在所有发现中的平均 AUC 为 0.713(0.645-0.785),而模型单独的平均 AUC 为 0.957(0.954-0.959)。在模型预测的 124 种临床发现中,模型单独分类的准确性明显高于未辅助的放射科医生,并且在所有其他临床发现中都不劣于未辅助的放射科医生。

结论

这项研究表明,一个全面的深度学习模型具有改善广泛临床实践中胸部 X 光解释的潜力。

资金

Annalise.ai。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验