Bu Yongjie, Zeng Kangjian, Yang Heng, Sun Aihui, Guan Qingjun, Zhou Shuang, Peng Wenqing, Wang Weijun, Ge Peng, Yang Yue
School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
Hunan Province Key Laboratory of Coal Resources Clean-Utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan 411201, China.
Molecules. 2025 Jun 26;30(13):2761. doi: 10.3390/molecules30132761.
The flocculation-based purification of quarry wastewater continues to pose a significant challenge in mineral processing and environmental engineering, primarily due to persistent turbidity issues and inefficient floc settling behaviour. In this study, we systematically investigate the synergistic effects of organic and inorganic flocculants to reduce turbidity and improve floc settling performance. Through a series of optimised experiments using polyaluminium chloride as an inorganic flocculant, polyacrylamide as an organic flocculant, and calcium oxide as a pH regulator agent, the treatment efficiency was evaluated. Under the optimal conditions with 200 g/m CaO as the regulator agent and 2.5 g/m PAC and 12 g/m PAM as flocculants, the residual turbidity was reduced to 97.30 NTU, meeting stringent industrial discharge standards and enabling zero-discharge water reuse. Zeta potential measurements, optical microscopy, and DLVO theory collectively elucidated the interfacial interactions between flocculants and mineral particles, with zeta potential revealing electrostatic effects, microscopy visualising aggregation patterns, and DLVO theory modelling revealing colloidal stability, thereby mechanistically explaining the enhanced aggregation behaviour.
基于絮凝的采石场废水净化在矿物加工和环境工程中仍然是一项重大挑战,主要原因是存在持续的浊度问题以及絮凝物沉降行为效率低下。在本研究中,我们系统地研究了有机和无机絮凝剂的协同作用,以降低浊度并改善絮凝物沉降性能。通过一系列使用聚合氯化铝作为无机絮凝剂、聚丙烯酰胺作为有机絮凝剂以及氧化钙作为pH调节剂的优化实验,对处理效率进行了评估。在以200 g/m³氧化钙作为调节剂、2.5 g/m³聚合氯化铝和12 g/m³聚丙烯酰胺作为絮凝剂的最佳条件下,残余浊度降至97.30 NTU,符合严格的工业排放标准并实现了零排放水的回用。zeta电位测量、光学显微镜和DLVO理论共同阐明了絮凝剂与矿物颗粒之间的界面相互作用,其中zeta电位揭示了静电效应,显微镜观察到了聚集模式,DLVO理论建模揭示了胶体稳定性,从而从机理上解释了增强的聚集行为。