Suppr超能文献

利用机器学习预测ABX钙钛矿的形成能

Prediction of ABX Perovskite Formation Energy Using Machine Learning.

作者信息

Deng Ziliang, Fang Kailing, Guo Chong, Gong Zhichao, Yue Haojie, Zhang Huacheng, Li Kang, Guo Kun, Liu Zhiyong, Xie Bing, Lu Jinshan, Yao Kui, Tay Francis Eng Hock

机构信息

School of Power and Energy, Nanchang Hangkong University, Nanchang 330063, China.

Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore 138634, Singapore.

出版信息

Materials (Basel). 2025 Jun 20;18(13):2927. doi: 10.3390/ma18132927.

Abstract

Materials with perovskite phases are widely used in solar cells and ferroelectric, piezoelectric, dielectric and superconducting devices due to their various notable functions. However, structural instability limits some compositions in forming robust perovskite phases for device applications. The analytical approach using the tolerance factor (t) can only guarantee prediction accuracy within a limited range, ascribed to its nature of overlooking the atomic interaction. Hence, here we establish a prediction model using formation energy as the target parameter for its reflection of the reaction of atoms and apply machine learning as the analysis method since it has been successfully employed in plenty of material property prediction studies. Machine learning employs statistical methodologies to identify correlative patterns within large-scale datasets, enabling accurate predictions with robust generalization. In this work, we built a model to predict the formation energy of ABX perovskite using machine learning and achieved a model with an R-squared value of 0.928 and a root mean square error of 0.301 eV/atom, validated by first-principles computations. In total, 75% of the values were correctly predicted within an error lower than 0.06. This work could contribute to accelerating the study of solving perovskites' instability.

摘要

具有钙钛矿相的材料因其各种显著功能而广泛应用于太阳能电池以及铁电、压电、介电和超导器件中。然而,结构不稳定性限制了一些成分形成用于器件应用的稳定钙钛矿相。使用容忍因子(t)的分析方法只能在有限范围内保证预测准确性,这归因于其忽视原子相互作用的本质。因此,在此我们建立一个以形成能为目标参数的预测模型,因为形成能反映了原子的反应,并应用机器学习作为分析方法,因为它已在大量材料性能预测研究中成功应用。机器学习采用统计方法来识别大规模数据集中的相关模式,从而能够进行具有强大泛化能力的准确预测。在这项工作中,我们使用机器学习构建了一个预测ABX钙钛矿形成能的模型,并通过第一性原理计算验证,得到了一个决定系数为0.928且均方根误差为0.301 eV/原子的模型。总共75%的值在误差低于0.06的情况下被正确预测。这项工作有助于加速解决钙钛矿不稳定性的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cccc/12250765/cc0ce8104ce9/materials-18-02927-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验